Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Improved Capacity of LiNi0.8Mn0.1Co0.1O2 Cathode upon Sn(IV) Doping by Facile Co-Precipitation Method
Corresponding Author(s) : P. Perumal
Asian Journal of Chemistry,
Vol. 32 No. 6 (2020): Vol 32 Issue 6
Abstract
Nickel rich lithium nickel manganese cobalt oxide is one of the prominent cathode materials in the field of lithium ion battery. The cathode was prepared upon doping with Sn4+ by simple co-precipitation method to develop its discharge capacity. The structural and morphological studies on the cathode material were done by X-ray diffraction and scanning electron microscopy to confirm any structural changes upon doping of Sn4+. The higher discharge capacity of 210 mAh g-1 with 89% capacity retention was achieved even after 100 cycles at C/3 rate for 0.8 mol % Sn4+ doped lithium nickel manganese cobalt oxide. The structural phase change upon cycling for Sn4+ doped and un-doped cathode was illustrated by differential plot. The ionic radius and high bond stability of Sn4+ that compares Ni2+ might be the reason to prevent structural collapse during Li+ intercalation and de-intercalation process.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.S. Whittingham, Chem. Rev., 104, 4271 (2004); https://doi.org/10.1021/cr020731c
- S. Flandrois and B. Simon, Carbon N.Y., 37, 165 (1999); https://doi.org/10.1016/S0008-6223(98)00290-5
- D. Aurbach, Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad, L. Asraf, J.S. Gnanaraj and H.-J. Kim, Electrochim. Acta, 50, 247 (2004); https://doi.org/10.1016/j.electacta.2004.01.090
- W. Guo, X. Xue, S. Wang, C. Lin and Z.L. Wang, Nano Lett., 12, 2520 (2012); https://doi.org/10.1021/nl3007159
- W. Lu, J. Liu, Y.K. Sun and K. Amine, J. Power Sources, 167, 212 (2007); https://doi.org/10.1016/j.jpowsour.2006.12.077
- X.Z. Liao, Y.S. He, Z.F. Ma, X.M. Zhang and L. Wang, J. Power Sources, 174, 720 (2007); https://doi.org/10.1016/j.jpowsour.2007.06.146
- X. Yu, Y. Lyu, L. Gu, H. Wu, S.-M. Bak, Y. Zhou, K. Amine, S.N. Ehrlich, H. Li, K.-W. Nam and X.-Q. Yang, Adv. Energy Mater., 4, 1300950 (2014); https://doi.org/10.1002/aenm.201300950
- T.E. Sutto, Inorg. Chem., 53, 4570 (2014); https://doi.org/10.1021/ic500252c
- C. Tian, F. Lin and M.M. Doeff, Acc. Chem. Res. 51, 89 (2018); https://doi.org/10.1021/acs.accounts.7b00520
- C. Li, H.P. Zhang, L.J. Fu, H. Liu, Y.P. Wu, E. Rahm, R. Holze and H.Q. Wu, Electrochim. Acta, 51, 3872 (2006); https://doi.org/10.1016/j.electacta.2005.11.015
- S.K. Martha, B. Markovsky, J. Grinblat, Y. Gofer, O. Haik, E. Zinigrad, D. Aurbach, T. Drezen, D. Wang, G. Deghenghi and I. Exnar, J. Electrochem. Soc., 156, A541 (2009); https://doi.org/10.1149/1.3125765
- J.-W. Shin and J.-T. Son, J. Korean Phys. Soc., 74, 53 (2019); https://doi.org/10.3938/jkps.74.53
- Z.W. Lebens-Higgins, S. Sallis, N.V. Faenza, F. Badway, N. Pereira, D.M. Halat, M. Wahila, C. Schlueter, T.-L. Lee, W. Yang, C.P. Grey, G.G. Amatucci and L.F.J. Piper, Chem. Mater., 30, 958 (2018); https://doi.org/10.1021/acs.chemmater.7b04782
- H. Winkler, Arch. Psychiatr. Nervenkr., 91, 495 (1930); https://doi.org/10.1007/BF01815652
- B. Han, T. Paulauskas, B. Key, C. Peebles, J.S. Park, R.F. Klie, J.T. Vaughey and F. Dogan, ACS Appl. Mater. Interfaces, 9, 14769 (2017); https://doi.org/10.1021/acsami.7b00595
- J. Li, R. Shunmugasundaram, R. Doig and J.R. Dahn, Chem. Mater., 28, 162 (2016); https://doi.org/10.1021/acs.chemmater.5b03500
- S.K. Martha, H. Sclar, Z. Szmuk Framowitz, D. Kovacheva, N. Saliyski, Y. Gofer, P. Sharon, E. Golik, B. Markovsky and D. Aurbach, J. Power Sources, 189, 248 (2009); https://doi.org/10.1016/j.jpowsour.2008.09.090
- S.-M. Bak, E. Hu, Y. Zhou, X. Yu, S.D. Senanayake, S.-J. Cho, K.-B. Kim, K.Y. Chung, X.-Q. Yang and K.-W. Nam, ACS Appl. Mater. Interfaces, 6, 22594 (2014); https://doi.org/10.1021/am506712c
- C.S. Yoon, H.-H. Ryu, G.-T. Park, J.-H. Kim, K.-H. Kim and Y.-K. Sun, J. Mater. Chem. A, 6, 4126 (2018); https://doi.org/10.1039/C7TA11346C
- T. Ohzuku, J. Electrochem. Soc., 140, 1862 (1993); https://doi.org/10.1149/1.2220730
- C.S. Yoon, D.-W. Jun, S.-T. Myung and Y.-K. Sun, ACS Energy Lett., 2, 1150 (2017); https://doi.org/10.1021/acsenergylett.7b00304
- C.S. Yoon, U.-H. Kim, G.-T. Park, S.J. Kim, K.-H. Kim, J. Kim and Y.-K. Sun, ACS Energy Lett., 3, 1634 (2018); https://doi.org/10.1021/acsenergylett.8b00805
- C.S. Yoon, U.-H. Kim, G.-T. Park, S.J. Kim, K.-H. Kim, J. Kim and Y.- K. Sun, ACS Energy Lett., 3, 1634 (2018); https://doi.org/10.1021/acsenergylett.8b00805
- H.-H. Ryu, K.-J. Park, C.S. Yoon and Y.-K. Sun, Chem. Mater., 30, 1155 (2018); https://doi.org/10.1021/acs.chemmater.7b05269
- Project, A.M.Q. Stabilized NMC811 to Enable High Energy Density Lithium Ion Batteries.
- E. Hu, X. Wang, X. Yu and X.-Q. Yang, Acc. Chem. Res., 51, 290 (2018); https://doi.org/10.1021/acs.accounts.7b00506
- P.K. Nayak, J. Grinblat, M. Levi, E. Levi, D. Zitoun, B. Markovsky and D. Aurbach, Mater. Sci. Eng. B, 213, 131 (2016); https://doi.org/10.1016/j.mseb.2016.04.012
- S.-K. Jung, H. Gwon, J. Hong, K.-Y. Park, D.-H. Seo, H. Kim, J. Hyun, W. Yang and K. Kang, Adv. Energy Mater., 4, 1300787 (2014); https://doi.org/10.1002/aenm.201300787
- L. Mu, R. Lin, R. Xu, L. Han, S. Xia, D. Sokaras, J.D. Steiner, T.-C. Weng, D. Nordlund, M.M. Doeff, Y. Liu, K. Zhao, H.L. Xin and F. Lin, Nano Lett., 18, 3241 (2018); https://doi.org/10.1021/acs.nanolett.8b01036
- S.J. Do, P. Santhoshkumar, S.H. Kang, K. Prasanna, Y.N. Jo and C.W. Lee, Ceram. Int., 45, 6972 (2019); https://doi.org/10.1016/j.ceramint.2018.12.196
- Y. Kou, E. Han, L.Z. Zhu, L. Liu and Z. Zhang, Solid State Ion., 296, 154 (2016); https://doi.org/10.1016/j.ssi.2016.09.020
- S. Neudeck, F. Walther, T. Bergfeldt, C. Suchomski, M. Rohnke, P. Hartmann, J. Janek and T. Brezesinski, ACS ppl. Mater. Interfaces, 10, 20487 (2018); https://doi.org/10.1021/acsami.8b04405
- H. Gao, X. Zeng, Y. Hu, V. Tileli, L. Li, Y. Ren, X. Meng, F. Maglia, P. Lamp, S.-J. Kim, K. Amine and Z. Chen, ACS Appl. Energy Mater., 1, 2254 (2018); https://doi.org/10.1021/acsaem.8b00323
- J.O. Binder, S.P. Culver, R. Pinedo, D.A. Weber, M.S. Friedrich, K.I. Gries, K. Volz, W.G. Zeier and J. Janek, ACS Appl. Mater. Interfaces, 10, 44452 (2018); https://doi.org/10.1021/acsami.8b16049
- M. Eilers-Rethwisch, S. Hildebrand, M. Evertz, L. Ibing, T. Dagger, M. Winter and F.M. Schappacher, J. Power Sources, 397, 68 (2018); https://doi.org/10.1016/j.jpowsour.2018.06.072
- J.W. Fergus, J. Power Sources, 195, 939 (2010); https://doi.org/10.1016/j.jpowsour.2009.08.089
- C.S. Yoon, K.-J. Park, U.-H. Kim, K.H. Kang, H.-H. Ryu and Y.-K. Sun, Chem. Mater., 29, 10436 (2017); https://doi.org/10.1021/acs.chemmater.7b04047
- X. Ma, C. Wang, J. Cheng and J. Sun, Solid State Ion., 178, 125 (2007); https://doi.org/10.1016/j.ssi.2006.11.017
- F. Schipper, M. Dixit, D. Kovacheva, M. Talianker, O. Haik, J. Grinblat, E.M. Erickson, C. Ghanty, D.T. Major, B. Markovsky and D. Aurbach, J. Mater. Chem. A Mater. Energy Sustain., 4, 16073 (2016); https://doi.org/10.1039/C6TA06740A
- J. Wandt, A.T.S. Freiberg, A. Ogrodnik and H.A. Gasteiger, Mater. Today, 21, 825 (2018); https://doi.org/10.1016/j.mattod.2018.03.037
- M. Dixit, B. Markovsky, F. Schipper, D. Aurbach and D.T. Major, J. Phys. Chem. C, 121, 22628 (2017); https://doi.org/10.1021/acs.jpcc.7b06122
- D.-S. Ko, J.-H Park, S. Park, Y.N. Ham, S.J. Ahn, J.-H. Park, H.N. Han, E. Lee, W.S. Jeon and C. Jung, Nano Energy, 56, 434 (2019); https://doi.org/10.1016/j.nanoen.2018.11.046
- G. Kang, K. Lee, K. Kwon and J. Song, Metals (Basel), 7, 395 (2017); https://doi.org/10.3390/met7100395
- J. Li, W. Li, S. Wang, K. Jarvis, J. Yang and A. Manthiram, Chem. Mater., 30, 3101 (2018); https://doi.org/10.1021/acs.chemmater.8b01077
- J. Yang and Y. Xia, ACS Appl. Mater. Interfaces, 8, 1297 (2016); https://doi.org/10.1021/acsami.5b09938
References
M.S. Whittingham, Chem. Rev., 104, 4271 (2004); https://doi.org/10.1021/cr020731c
S. Flandrois and B. Simon, Carbon N.Y., 37, 165 (1999); https://doi.org/10.1016/S0008-6223(98)00290-5
D. Aurbach, Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad, L. Asraf, J.S. Gnanaraj and H.-J. Kim, Electrochim. Acta, 50, 247 (2004); https://doi.org/10.1016/j.electacta.2004.01.090
W. Guo, X. Xue, S. Wang, C. Lin and Z.L. Wang, Nano Lett., 12, 2520 (2012); https://doi.org/10.1021/nl3007159
W. Lu, J. Liu, Y.K. Sun and K. Amine, J. Power Sources, 167, 212 (2007); https://doi.org/10.1016/j.jpowsour.2006.12.077
X.Z. Liao, Y.S. He, Z.F. Ma, X.M. Zhang and L. Wang, J. Power Sources, 174, 720 (2007); https://doi.org/10.1016/j.jpowsour.2007.06.146
X. Yu, Y. Lyu, L. Gu, H. Wu, S.-M. Bak, Y. Zhou, K. Amine, S.N. Ehrlich, H. Li, K.-W. Nam and X.-Q. Yang, Adv. Energy Mater., 4, 1300950 (2014); https://doi.org/10.1002/aenm.201300950
T.E. Sutto, Inorg. Chem., 53, 4570 (2014); https://doi.org/10.1021/ic500252c
C. Tian, F. Lin and M.M. Doeff, Acc. Chem. Res. 51, 89 (2018); https://doi.org/10.1021/acs.accounts.7b00520
C. Li, H.P. Zhang, L.J. Fu, H. Liu, Y.P. Wu, E. Rahm, R. Holze and H.Q. Wu, Electrochim. Acta, 51, 3872 (2006); https://doi.org/10.1016/j.electacta.2005.11.015
S.K. Martha, B. Markovsky, J. Grinblat, Y. Gofer, O. Haik, E. Zinigrad, D. Aurbach, T. Drezen, D. Wang, G. Deghenghi and I. Exnar, J. Electrochem. Soc., 156, A541 (2009); https://doi.org/10.1149/1.3125765
J.-W. Shin and J.-T. Son, J. Korean Phys. Soc., 74, 53 (2019); https://doi.org/10.3938/jkps.74.53
Z.W. Lebens-Higgins, S. Sallis, N.V. Faenza, F. Badway, N. Pereira, D.M. Halat, M. Wahila, C. Schlueter, T.-L. Lee, W. Yang, C.P. Grey, G.G. Amatucci and L.F.J. Piper, Chem. Mater., 30, 958 (2018); https://doi.org/10.1021/acs.chemmater.7b04782
H. Winkler, Arch. Psychiatr. Nervenkr., 91, 495 (1930); https://doi.org/10.1007/BF01815652
B. Han, T. Paulauskas, B. Key, C. Peebles, J.S. Park, R.F. Klie, J.T. Vaughey and F. Dogan, ACS Appl. Mater. Interfaces, 9, 14769 (2017); https://doi.org/10.1021/acsami.7b00595
J. Li, R. Shunmugasundaram, R. Doig and J.R. Dahn, Chem. Mater., 28, 162 (2016); https://doi.org/10.1021/acs.chemmater.5b03500
S.K. Martha, H. Sclar, Z. Szmuk Framowitz, D. Kovacheva, N. Saliyski, Y. Gofer, P. Sharon, E. Golik, B. Markovsky and D. Aurbach, J. Power Sources, 189, 248 (2009); https://doi.org/10.1016/j.jpowsour.2008.09.090
S.-M. Bak, E. Hu, Y. Zhou, X. Yu, S.D. Senanayake, S.-J. Cho, K.-B. Kim, K.Y. Chung, X.-Q. Yang and K.-W. Nam, ACS Appl. Mater. Interfaces, 6, 22594 (2014); https://doi.org/10.1021/am506712c
C.S. Yoon, H.-H. Ryu, G.-T. Park, J.-H. Kim, K.-H. Kim and Y.-K. Sun, J. Mater. Chem. A, 6, 4126 (2018); https://doi.org/10.1039/C7TA11346C
T. Ohzuku, J. Electrochem. Soc., 140, 1862 (1993); https://doi.org/10.1149/1.2220730
C.S. Yoon, D.-W. Jun, S.-T. Myung and Y.-K. Sun, ACS Energy Lett., 2, 1150 (2017); https://doi.org/10.1021/acsenergylett.7b00304
C.S. Yoon, U.-H. Kim, G.-T. Park, S.J. Kim, K.-H. Kim, J. Kim and Y.-K. Sun, ACS Energy Lett., 3, 1634 (2018); https://doi.org/10.1021/acsenergylett.8b00805
C.S. Yoon, U.-H. Kim, G.-T. Park, S.J. Kim, K.-H. Kim, J. Kim and Y.- K. Sun, ACS Energy Lett., 3, 1634 (2018); https://doi.org/10.1021/acsenergylett.8b00805
H.-H. Ryu, K.-J. Park, C.S. Yoon and Y.-K. Sun, Chem. Mater., 30, 1155 (2018); https://doi.org/10.1021/acs.chemmater.7b05269
Project, A.M.Q. Stabilized NMC811 to Enable High Energy Density Lithium Ion Batteries.
E. Hu, X. Wang, X. Yu and X.-Q. Yang, Acc. Chem. Res., 51, 290 (2018); https://doi.org/10.1021/acs.accounts.7b00506
P.K. Nayak, J. Grinblat, M. Levi, E. Levi, D. Zitoun, B. Markovsky and D. Aurbach, Mater. Sci. Eng. B, 213, 131 (2016); https://doi.org/10.1016/j.mseb.2016.04.012
S.-K. Jung, H. Gwon, J. Hong, K.-Y. Park, D.-H. Seo, H. Kim, J. Hyun, W. Yang and K. Kang, Adv. Energy Mater., 4, 1300787 (2014); https://doi.org/10.1002/aenm.201300787
L. Mu, R. Lin, R. Xu, L. Han, S. Xia, D. Sokaras, J.D. Steiner, T.-C. Weng, D. Nordlund, M.M. Doeff, Y. Liu, K. Zhao, H.L. Xin and F. Lin, Nano Lett., 18, 3241 (2018); https://doi.org/10.1021/acs.nanolett.8b01036
S.J. Do, P. Santhoshkumar, S.H. Kang, K. Prasanna, Y.N. Jo and C.W. Lee, Ceram. Int., 45, 6972 (2019); https://doi.org/10.1016/j.ceramint.2018.12.196
Y. Kou, E. Han, L.Z. Zhu, L. Liu and Z. Zhang, Solid State Ion., 296, 154 (2016); https://doi.org/10.1016/j.ssi.2016.09.020
S. Neudeck, F. Walther, T. Bergfeldt, C. Suchomski, M. Rohnke, P. Hartmann, J. Janek and T. Brezesinski, ACS ppl. Mater. Interfaces, 10, 20487 (2018); https://doi.org/10.1021/acsami.8b04405
H. Gao, X. Zeng, Y. Hu, V. Tileli, L. Li, Y. Ren, X. Meng, F. Maglia, P. Lamp, S.-J. Kim, K. Amine and Z. Chen, ACS Appl. Energy Mater., 1, 2254 (2018); https://doi.org/10.1021/acsaem.8b00323
J.O. Binder, S.P. Culver, R. Pinedo, D.A. Weber, M.S. Friedrich, K.I. Gries, K. Volz, W.G. Zeier and J. Janek, ACS Appl. Mater. Interfaces, 10, 44452 (2018); https://doi.org/10.1021/acsami.8b16049
M. Eilers-Rethwisch, S. Hildebrand, M. Evertz, L. Ibing, T. Dagger, M. Winter and F.M. Schappacher, J. Power Sources, 397, 68 (2018); https://doi.org/10.1016/j.jpowsour.2018.06.072
J.W. Fergus, J. Power Sources, 195, 939 (2010); https://doi.org/10.1016/j.jpowsour.2009.08.089
C.S. Yoon, K.-J. Park, U.-H. Kim, K.H. Kang, H.-H. Ryu and Y.-K. Sun, Chem. Mater., 29, 10436 (2017); https://doi.org/10.1021/acs.chemmater.7b04047
X. Ma, C. Wang, J. Cheng and J. Sun, Solid State Ion., 178, 125 (2007); https://doi.org/10.1016/j.ssi.2006.11.017
F. Schipper, M. Dixit, D. Kovacheva, M. Talianker, O. Haik, J. Grinblat, E.M. Erickson, C. Ghanty, D.T. Major, B. Markovsky and D. Aurbach, J. Mater. Chem. A Mater. Energy Sustain., 4, 16073 (2016); https://doi.org/10.1039/C6TA06740A
J. Wandt, A.T.S. Freiberg, A. Ogrodnik and H.A. Gasteiger, Mater. Today, 21, 825 (2018); https://doi.org/10.1016/j.mattod.2018.03.037
M. Dixit, B. Markovsky, F. Schipper, D. Aurbach and D.T. Major, J. Phys. Chem. C, 121, 22628 (2017); https://doi.org/10.1021/acs.jpcc.7b06122
D.-S. Ko, J.-H Park, S. Park, Y.N. Ham, S.J. Ahn, J.-H. Park, H.N. Han, E. Lee, W.S. Jeon and C. Jung, Nano Energy, 56, 434 (2019); https://doi.org/10.1016/j.nanoen.2018.11.046
G. Kang, K. Lee, K. Kwon and J. Song, Metals (Basel), 7, 395 (2017); https://doi.org/10.3390/met7100395
J. Li, W. Li, S. Wang, K. Jarvis, J. Yang and A. Manthiram, Chem. Mater., 30, 3101 (2018); https://doi.org/10.1021/acs.chemmater.8b01077
J. Yang and Y. Xia, ACS Appl. Mater. Interfaces, 8, 1297 (2016); https://doi.org/10.1021/acsami.5b09938