Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Correlation for Photocatalytic Degradation Kinetics of Carboxylic Acids using Electrochemically Synthesized Al2S3 Nanoparticles and Study of Antibacterial Activity
Corresponding Author(s) : Sannaiah Ananda
Asian Journal of Chemistry,
Vol. 32 No. 6 (2020): Vol 32 Issue 6
Abstract
Aluminium sulfide (Al2S3) nanoparticles were successfully synthesized by electrochemical method. Further, the synthesized nanoparticles were used as a photocatalyst for degradation of trichloroacetic acid, chloroacetic acid, acetic acid and degradation kinetics was studied by volumetric method using NaOH under various experimental conditions. The Al2S3 nanoparticles were characterized by UV-visible spectroscopy, X-ray diffraction and SEM-EDAX. The study of UV-visible spectroscopy indicates that Al2S3 nanoparticles shows maximum intensity peak at 222 nm in the UV region and there is no absorption peak in the visible region, therefore the synthesized nanoparticles is active under UV light and band gap energy was found to be 3.07 eV, which was calculated using Tauc plot. The structure of Al2S3 was found to be tetragonal structure and average crystal size was found to be 25.76 nm, which was calculated using Debye-Scherrer′s formula. The SEM results showed that Al2S3 appears as nanoflakes with agglomerated. The presence of aluminium and sulfur was confirmed using EDAX spectra. The photocatalytic activity of the synthesized Al2S3 nanoparticles was examined by taking three carboxylic acids by volumetric method. Taft LFER was tested, the isokinetic temperature β was calculated for oxidation of carboxylic acids. The antibacterial activity was investigated for synthesized nanoparticles by using Bacillus subtilis MTCC 2763 and Escherichia coli MTCC 40 of different bacteria.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Sowbhagya and S. Ananda, Am. Chem. Sci. J., 4, 616 (2014).
- G. Doria, J. Conde, B. Veigas, L. Giestas, C. Almeida, M. Assuncao, J. Rosa and P.V. Baptista, Sensors, 12, 1657 (2012); https://doi.org/10.3390/s120201657
- W.P. McConnell, J.P. Novak, L.C. Brousseau, R.R. Fuierer, R.C. Tenent and D.L. Feldheim, J. Phys. Chem. B, 104, 8925 (2000); https://doi.org/10.1021/jp000926t
- M. Kooti and L. Matouri, Res. Revs: J. Mater. Sci., 2, 37 (2013).
- A.S. Aldwayyan, F.M. Al-Jekhedab, M. Al-Noaimi, B. Hammouti, T.B. Hadda, M. Suleiman and I. Warad, Int. J. Electrochem. Sci., 8, 10506 (2013).
- P. Kulkarni, S.K. Nataraj, R.G. Balakrishna, D.H. Nagaraju and M.V. Reddy, J. Mater. Chem. A, 5, 22040 (2017); https://doi.org/10.1039/C7TA07329A
- M. Shen, C. Ruan, Y. Chen, C. Jiang, K. Ai and L. Lu, ACS Appl. Mater. Interfaces, 7, 1207 (2015); https://doi.org/10.1021/am507033x
- Z. Ma, X. Yuan, Z. Zhang, D. Mei, L. Li, Z.-F. Ma, L. Zhang, J. Yang and J. Zhang, Sci. Rep., 5, 18199 (2015); https://doi.org/10.1038/srep18199
- X. Meng, Y. Cao, J.A. Libera and J.W. Elam, Chem. Mater., 29, 19043 (2017); https://doi.org/10.1021/nn505480w
- C.-H. Lai, M.-Y. Lu and L.-J. Chen, J. Mater. Chem., 22, 19 (2012); https://doi.org/10.1039/C1JM13879K
- J. Cabana, L. Monconduit, D. Larcher and M.R. Palacin, Adv. Mater., 22, E170 (2010); https://doi.org/10.1002/adma.201000717
- L.J. Lopes, A.C. Estrada, S.Fateixa, M. Ferro and T. Trindade, Nanomaterials, 7, 245 (2017); https://doi.org/10.3390/nano7090245
- T. Trindade and P.J. Thomas, Defining and Using Very Small Crystals, In: Comprehensive Inorganic Chemistry II, Elsevier: Oxford, MS, USA, edn 2, vol. 4, pp. 343-369 (2013).
- G.H.A. Therese and P.V. Kamath, Chem. Mater., 12, 1195 (2000); https://doi.org/10.1021/cm990447a
- M. Kristl, S. Gyergyek, N. Srt and I. Ban, Mater. Manuf. Process., 31, 1608 (2016); https://doi.org/10.1080/10426914.2015.1103860
- A.P. Velmuzhov, M.V. Sukhanov, V.S. Shiyaev, M.F. Churbanov and A.I. Suchov, Chalcogenide Lett., 10, 443 (2013).
- V.V. Kulish, D. Koch and S. Manzhos, Phys. Chem. Chem. Phys., 19, 6076 (2017); https://doi.org/10.1039/C6CP08284J
- X. Sun, P. Bonnick and L.F. Nazar, ACS Energy Lett., 1, 297 (2016); https://doi.org/10.1021/acsenergylett.6b00145
- P.A. Ajibade and J.Z. Mbese, Int. J. Polym. Sci., 2014, 752394 (2014); https://doi.org/10.1155/2014/752394
- T.P. Mthethwa, M.J. Moloto, A. deVries and K.P. Matabola, Mater. Res. Bull., 46, 569 (2011); https://doi.org/10.1016/j.materresbull.2010.12.022
- A. Khan, J. Nanomater., 2012, 451506 (2012); https://doi.org/10.1155/2012/451506
- Y.-R. Hong, S. Mhin, J. Kwon, W.-S. Han, T. Song and H.S. Han, R. Soc. Open Sci., 5, 180927 (2018); https://doi.org/10.1098/rsos.180927
- N. Armaroli and V. Balzani, Angew. Chem. Int. Ed., 46, 52 (2007); https://doi.org/10.1002/anie.200602373
- G. Chaitanya Lakshmi, S. Ananda and C. Somashekar, Int. J. Adv. Mater. Sci., 3, 221 (2012).
- K. Byrappa, A.K. Subramani, S. Ananda, K.M.L. Rai, R. Dinesh and M. Yoshimura, Bull. Mater. Sci., 29, 433 (2006); https://doi.org/10.1007/BF02914073
- S. Kondawar, R. Mahore, A. Dahegaonkar, Adv. Appl. Sci. Res., 2, 401 (2011).
- X.Y. Ma, G.X. Lu and B.J. Yang, Appl. Surf. Sci., 187, 235 (2002); https://doi.org/10.1016/S0169-4332(01)00994-1
- X.R. Ye, C. Daraio, C. Wang, J.B. Talbot and S. Jin, J. Nanosci. Nanotechnol., 6, 852 (2006); https://doi.org/10.1166/jnn.2006.135
- T.P. Sharma, D. Patidar, N.S. Saxena and K. Sharma, Indian J. Pure Appl. Phys., 44, 520 (2006).
- R.S. Ananda, N.M.M. Gowda and K.R. Raksha, Adv. Nanopart., 3, 133 (2014); https://doi.org/10.4236/anp.2014.34018
- K.R. Raksha and S. Ananda, J. Appl. Chem., 3, 397 (2014).
- B. Kraeutler and A.J. Bard, J. Am. Chem. Soc., 100, 5985 (1978); https://doi.org/10.1021/ja00487a001
- O. Exner, Collect. Czech. Chem. Commun., 29, 1094 (1964); https://doi.org/10.1135/cccc19641094
- R.D. Gillion, Introduction to Physical Organic Chemistry, Addison Wesley, London, pp. 156-160, p. 168 (1970).
- O. Exner, eds.: N.B. Chapman and J. Shorter, Correlation Analysis in Chemistry, Plenum Press: London (1978).
- G. Bott, L.D. Field and S. Sternhell, J. Am. Chem. Soc., 102, 5618 (1980); https://doi.org/10.1021/ja00537a036
- A.W. Bauer, W.M.M. Kirby, J.C. Sherris and M. Turck, Am. J. Clin. Pathol., 45(4_ts), 493 (1966); https://doi.org/10.1093/ajcp/45.4_ts.493
- K.S. Khashan, G.M. Sulaiman, F.A. Abdul Ameer and G. Napolitano, Pak. J. Pharm. Sci., 29, 541 (2016).
References
Sowbhagya and S. Ananda, Am. Chem. Sci. J., 4, 616 (2014).
G. Doria, J. Conde, B. Veigas, L. Giestas, C. Almeida, M. Assuncao, J. Rosa and P.V. Baptista, Sensors, 12, 1657 (2012); https://doi.org/10.3390/s120201657
W.P. McConnell, J.P. Novak, L.C. Brousseau, R.R. Fuierer, R.C. Tenent and D.L. Feldheim, J. Phys. Chem. B, 104, 8925 (2000); https://doi.org/10.1021/jp000926t
M. Kooti and L. Matouri, Res. Revs: J. Mater. Sci., 2, 37 (2013).
A.S. Aldwayyan, F.M. Al-Jekhedab, M. Al-Noaimi, B. Hammouti, T.B. Hadda, M. Suleiman and I. Warad, Int. J. Electrochem. Sci., 8, 10506 (2013).
P. Kulkarni, S.K. Nataraj, R.G. Balakrishna, D.H. Nagaraju and M.V. Reddy, J. Mater. Chem. A, 5, 22040 (2017); https://doi.org/10.1039/C7TA07329A
M. Shen, C. Ruan, Y. Chen, C. Jiang, K. Ai and L. Lu, ACS Appl. Mater. Interfaces, 7, 1207 (2015); https://doi.org/10.1021/am507033x
Z. Ma, X. Yuan, Z. Zhang, D. Mei, L. Li, Z.-F. Ma, L. Zhang, J. Yang and J. Zhang, Sci. Rep., 5, 18199 (2015); https://doi.org/10.1038/srep18199
X. Meng, Y. Cao, J.A. Libera and J.W. Elam, Chem. Mater., 29, 19043 (2017); https://doi.org/10.1021/nn505480w
C.-H. Lai, M.-Y. Lu and L.-J. Chen, J. Mater. Chem., 22, 19 (2012); https://doi.org/10.1039/C1JM13879K
J. Cabana, L. Monconduit, D. Larcher and M.R. Palacin, Adv. Mater., 22, E170 (2010); https://doi.org/10.1002/adma.201000717
L.J. Lopes, A.C. Estrada, S.Fateixa, M. Ferro and T. Trindade, Nanomaterials, 7, 245 (2017); https://doi.org/10.3390/nano7090245
T. Trindade and P.J. Thomas, Defining and Using Very Small Crystals, In: Comprehensive Inorganic Chemistry II, Elsevier: Oxford, MS, USA, edn 2, vol. 4, pp. 343-369 (2013).
G.H.A. Therese and P.V. Kamath, Chem. Mater., 12, 1195 (2000); https://doi.org/10.1021/cm990447a
M. Kristl, S. Gyergyek, N. Srt and I. Ban, Mater. Manuf. Process., 31, 1608 (2016); https://doi.org/10.1080/10426914.2015.1103860
A.P. Velmuzhov, M.V. Sukhanov, V.S. Shiyaev, M.F. Churbanov and A.I. Suchov, Chalcogenide Lett., 10, 443 (2013).
V.V. Kulish, D. Koch and S. Manzhos, Phys. Chem. Chem. Phys., 19, 6076 (2017); https://doi.org/10.1039/C6CP08284J
X. Sun, P. Bonnick and L.F. Nazar, ACS Energy Lett., 1, 297 (2016); https://doi.org/10.1021/acsenergylett.6b00145
P.A. Ajibade and J.Z. Mbese, Int. J. Polym. Sci., 2014, 752394 (2014); https://doi.org/10.1155/2014/752394
T.P. Mthethwa, M.J. Moloto, A. deVries and K.P. Matabola, Mater. Res. Bull., 46, 569 (2011); https://doi.org/10.1016/j.materresbull.2010.12.022
A. Khan, J. Nanomater., 2012, 451506 (2012); https://doi.org/10.1155/2012/451506
Y.-R. Hong, S. Mhin, J. Kwon, W.-S. Han, T. Song and H.S. Han, R. Soc. Open Sci., 5, 180927 (2018); https://doi.org/10.1098/rsos.180927
N. Armaroli and V. Balzani, Angew. Chem. Int. Ed., 46, 52 (2007); https://doi.org/10.1002/anie.200602373
G. Chaitanya Lakshmi, S. Ananda and C. Somashekar, Int. J. Adv. Mater. Sci., 3, 221 (2012).
K. Byrappa, A.K. Subramani, S. Ananda, K.M.L. Rai, R. Dinesh and M. Yoshimura, Bull. Mater. Sci., 29, 433 (2006); https://doi.org/10.1007/BF02914073
S. Kondawar, R. Mahore, A. Dahegaonkar, Adv. Appl. Sci. Res., 2, 401 (2011).
X.Y. Ma, G.X. Lu and B.J. Yang, Appl. Surf. Sci., 187, 235 (2002); https://doi.org/10.1016/S0169-4332(01)00994-1
X.R. Ye, C. Daraio, C. Wang, J.B. Talbot and S. Jin, J. Nanosci. Nanotechnol., 6, 852 (2006); https://doi.org/10.1166/jnn.2006.135
T.P. Sharma, D. Patidar, N.S. Saxena and K. Sharma, Indian J. Pure Appl. Phys., 44, 520 (2006).
R.S. Ananda, N.M.M. Gowda and K.R. Raksha, Adv. Nanopart., 3, 133 (2014); https://doi.org/10.4236/anp.2014.34018
K.R. Raksha and S. Ananda, J. Appl. Chem., 3, 397 (2014).
B. Kraeutler and A.J. Bard, J. Am. Chem. Soc., 100, 5985 (1978); https://doi.org/10.1021/ja00487a001
O. Exner, Collect. Czech. Chem. Commun., 29, 1094 (1964); https://doi.org/10.1135/cccc19641094
R.D. Gillion, Introduction to Physical Organic Chemistry, Addison Wesley, London, pp. 156-160, p. 168 (1970).
O. Exner, eds.: N.B. Chapman and J. Shorter, Correlation Analysis in Chemistry, Plenum Press: London (1978).
G. Bott, L.D. Field and S. Sternhell, J. Am. Chem. Soc., 102, 5618 (1980); https://doi.org/10.1021/ja00537a036
A.W. Bauer, W.M.M. Kirby, J.C. Sherris and M. Turck, Am. J. Clin. Pathol., 45(4_ts), 493 (1966); https://doi.org/10.1093/ajcp/45.4_ts.493
K.S. Khashan, G.M. Sulaiman, F.A. Abdul Ameer and G. Napolitano, Pak. J. Pharm. Sci., 29, 541 (2016).