Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
New Zn(II) Complexes of Substituted bis(Salicylidene)phenyl-1,2-diamino Based Organic Ligands: Synthesis, Photoluminescence, Applications in Forensic Fingerprint and Dye Sensitized Solar Cells
Corresponding Author(s) : M. Srinivas
Asian Journal of Chemistry,
Vol. 32 No. 4 (2020): Vol 32 Issue 4, 2020
Abstract
New azomethine-Zn(II) complexes of bis(salicylidene)phenyl-1,2-diamino organic ligand derivatives were synthesized by the reaction of salicylaldehyde, substituted phenyl-1,2-diamine with zinc acetate. The synthesized complexes were characterized by FTIR, 1H NMR and EDS. Their photophysical and electrochemical properties were studied and their applicability for dye-sensitized solar cells (DSSCs) and forensic finger print developments have been demonstrated. Photoluminescence studies revealed that the emission peaks of the complexes in solution state appeared at 372-406 nm and emitted blue light. Latent fingerprint detection study indicated that the powder compounds show good adhesion and finger ridge details without back ground staining. Based on these results, it was ascertained that these Zn(II) complexes can serve as a suitable non-dopant blue light emitting compound for flat panel display applications and applied to detect fingerprints on all types of smooth surfaces.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Shahedi, M.R. Jafari and A.A. Zolanvari, J. Mater. Sci. Mater. Electron., 28, 7313 (2017); https://doi.org/10.1007/s10854-017-6417-5
- Z. Onal, H. Zengin and M. Sonmez, Turk. J. Chem., 35, 905 (2011).
- R. Kumar, A. Dvivedi and P. Bhargava, AIP Conf. Proced., 1728, 020025 (2016); https://doi.org/10.1063/1.4946075
- Y. He, C. Zhong, Y. Zhou and H. Zhang, J. Chem. Sci., 121, 407 (2009); https://doi.org/10.1007/s12039-009-0047-2
- X. Qin, Y. Ji, Y. Gao, L. Yan, S. Ding, Y. Wang and Z. Liu, Z. Anorg. Allg. Chem., 640, 462 (2014); https://doi.org/10.1002/zaac.201300279
- Z. Q. Feng and X. L. Y. Feang Ye, The Scientific World J., 2013, 956840, (2013); https://doi.org/10.1155/2013/956840
- Z. Li, A. Dellali, J. Malik, M. Motevalli, R.M. Nix, T. Olukoya, Y. Peng, H. Ye, W.P. Gillin, I. Hernández and P.B. Wyatt, Inorg. Chem., 52, 1379 (2013); https://doi.org/10.1021/ic302063u
- E. Nosova, T. Stupina, A. Chupakhin, G. Lipunova, M. Valova, P. Slepukhin and V. Charushin, Open Chem., 13, 61 (2015); https://doi.org/10.1515/chem-2015-0005
- B. O’Regan and M. Grätzel, Nature, 353, 737 (1991); https://doi.org/10.1038/353737a0
- M. Durr, M. Schmid, M. Obermaier, S. Rosselli, A. Yasuda and G. Nelles, Nature, 4, 607 (2005); https://doi.org/10.1038/nmat1433
- L.R. Xu, Y. Li, S.Z. Wu, X.H. Liu and B. Su, Angew. Chem. Int. Ed., 51, 8068 (2012); https://doi.org/10.1002/anie.201203815
- L. Feng, X. Sun, C. Liu and W. Xing, Chem. Commun., 48, 419 (2012); https://doi.org/10.1039/C1CC16522D
- Y. Li, L.R. Xu, Y.Y. He and B. Su, Electrochem. Commun., 33, 92 (2013); https://doi.org/10.1016/j.elecom.2013.04.033
- K. Li, W.W. Qin, F. Li, X.C. Zhao, B.W. Jiang, K. Wang, S.H. Deng, C.H. Fan and D. Li, Angew. Chem. Int. Ed., 52, 11542 (2013); https://doi.org/10.1002/anie.201305980
- L.R. Xu, Z.Y. Zhou, C.Z. Zhang, Y.Y. He and B. Su, Chem. Commun., 50, 9097 (2014); https://doi.org/10.1039/C4CC03466J
- J. Tan, L. Xu, T. Li, B. Su and J. Wu, Angew. Chem. Int. Ed., 53, 9822 (2014); https://doi.org/10.1002/anie.201404948
- M. Wang, M. Li, M. Yang, X. Zhang, A. Yu, Y. Zhu, P. Qiu and C. Mao, Nano Res., 8, 1800 (2015); https://doi.org/10.1007/s12274-014-0686-6
- G.P. Darshan, H.B. Premkumar, H. Nagabhushana, S.C. Sharma, S.C. Prashanth and B.D. Prasad, J. Colloid Interface Sci., 464, 206 (2016); https://doi.org/10.1016/j.jcis.2015.11.025
- M. Srinivas, G.R. Vijayakumar, K.M. Mahadevan, H. Nagabhushana and H.S. Bhojya Naik, J. Sci. Adv. Mater. Devices, 2, 156 (2017); https://doi.org/10.1016/j.jsamd.2017.02.008
- M. Srinivas, T.O. Shrungesh Kumar, K.M. Mahadevan, S. Naveen, G.R. Vijayakumar, H. Nagabhushana, M.N. Kumara and N.K. Lokanath, J. Sci. Adv. Mater. Devices, 1, 324 (2016); https://doi.org/10.1016/j.jsamd.2016.07.002
- N. Chander and V.K. Komarala, Indian J. Pure Appl. Phys., 55, 737 (2017).
References
Z. Shahedi, M.R. Jafari and A.A. Zolanvari, J. Mater. Sci. Mater. Electron., 28, 7313 (2017); https://doi.org/10.1007/s10854-017-6417-5
Z. Onal, H. Zengin and M. Sonmez, Turk. J. Chem., 35, 905 (2011).
R. Kumar, A. Dvivedi and P. Bhargava, AIP Conf. Proced., 1728, 020025 (2016); https://doi.org/10.1063/1.4946075
Y. He, C. Zhong, Y. Zhou and H. Zhang, J. Chem. Sci., 121, 407 (2009); https://doi.org/10.1007/s12039-009-0047-2
X. Qin, Y. Ji, Y. Gao, L. Yan, S. Ding, Y. Wang and Z. Liu, Z. Anorg. Allg. Chem., 640, 462 (2014); https://doi.org/10.1002/zaac.201300279
Z. Q. Feng and X. L. Y. Feang Ye, The Scientific World J., 2013, 956840, (2013); https://doi.org/10.1155/2013/956840
Z. Li, A. Dellali, J. Malik, M. Motevalli, R.M. Nix, T. Olukoya, Y. Peng, H. Ye, W.P. Gillin, I. Hernández and P.B. Wyatt, Inorg. Chem., 52, 1379 (2013); https://doi.org/10.1021/ic302063u
E. Nosova, T. Stupina, A. Chupakhin, G. Lipunova, M. Valova, P. Slepukhin and V. Charushin, Open Chem., 13, 61 (2015); https://doi.org/10.1515/chem-2015-0005
B. O’Regan and M. Grätzel, Nature, 353, 737 (1991); https://doi.org/10.1038/353737a0
M. Durr, M. Schmid, M. Obermaier, S. Rosselli, A. Yasuda and G. Nelles, Nature, 4, 607 (2005); https://doi.org/10.1038/nmat1433
L.R. Xu, Y. Li, S.Z. Wu, X.H. Liu and B. Su, Angew. Chem. Int. Ed., 51, 8068 (2012); https://doi.org/10.1002/anie.201203815
L. Feng, X. Sun, C. Liu and W. Xing, Chem. Commun., 48, 419 (2012); https://doi.org/10.1039/C1CC16522D
Y. Li, L.R. Xu, Y.Y. He and B. Su, Electrochem. Commun., 33, 92 (2013); https://doi.org/10.1016/j.elecom.2013.04.033
K. Li, W.W. Qin, F. Li, X.C. Zhao, B.W. Jiang, K. Wang, S.H. Deng, C.H. Fan and D. Li, Angew. Chem. Int. Ed., 52, 11542 (2013); https://doi.org/10.1002/anie.201305980
L.R. Xu, Z.Y. Zhou, C.Z. Zhang, Y.Y. He and B. Su, Chem. Commun., 50, 9097 (2014); https://doi.org/10.1039/C4CC03466J
J. Tan, L. Xu, T. Li, B. Su and J. Wu, Angew. Chem. Int. Ed., 53, 9822 (2014); https://doi.org/10.1002/anie.201404948
M. Wang, M. Li, M. Yang, X. Zhang, A. Yu, Y. Zhu, P. Qiu and C. Mao, Nano Res., 8, 1800 (2015); https://doi.org/10.1007/s12274-014-0686-6
G.P. Darshan, H.B. Premkumar, H. Nagabhushana, S.C. Sharma, S.C. Prashanth and B.D. Prasad, J. Colloid Interface Sci., 464, 206 (2016); https://doi.org/10.1016/j.jcis.2015.11.025
M. Srinivas, G.R. Vijayakumar, K.M. Mahadevan, H. Nagabhushana and H.S. Bhojya Naik, J. Sci. Adv. Mater. Devices, 2, 156 (2017); https://doi.org/10.1016/j.jsamd.2017.02.008
M. Srinivas, T.O. Shrungesh Kumar, K.M. Mahadevan, S. Naveen, G.R. Vijayakumar, H. Nagabhushana, M.N. Kumara and N.K. Lokanath, J. Sci. Adv. Mater. Devices, 1, 324 (2016); https://doi.org/10.1016/j.jsamd.2016.07.002
N. Chander and V.K. Komarala, Indian J. Pure Appl. Phys., 55, 737 (2017).