Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copper Electropolishing in Phosphoric Acid under Normal and Forced Convection Conditions in Presence of Some Pharmaceutical Drugs
Corresponding Author(s) : Fatma M. Abouzeid
Asian Journal of Chemistry,
Vol. 32 No. 4 (2020): Vol 32 Issue 4, 2020
Abstract
Some pharmaceutical drugs namely valsartan, hydrocholorothiazide, erythromycin thiocynate and diclofenac potassium were studied as chemical additions for enhancing the finished copper surface attained. Anode potential-limiting current relationship was measured and comparing of gradually increasing pharmaceutical compound concentrations (from 1 × 10-4 to 7 × 10-4 M). Copper dissolution behaviour in presence of pharmaceutical compounds was studied under natural convection [rotating cylinder (RCE) and rotating disc electrode (RDE)] as forced convection. The limiting current was found to diminish with enlarging additives concentration and increase with increasing temperature (293-313 K). Activation energies values confirm that reaction rate was diffusion controlled. The results showed that the improvement produced in electropolishing in presence of pharmaceutical compounds occurs through adsorption of their molecules above metal surface. All the pharmaceutical compounds adsorption process obey kinetic-thermodynamic model. The data under different conditions were controlled by dimensionless correlations viz. Sherwood, Schmidt and Reynolds numbers. Surface morphology also confirmed that an addition of pharmaceutical compound to copper dissolution bath enhance surface appearance and its texture quality to great extent.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Eliaz and O. Nissan, J. Biomed. Mater. Res., 83, 546 (2007); https://doi.org/10.1002/jbm.a.31429
- M.A. Deyab, Desalination, 439, 73 (2018); https://doi.org/10.1016/j.desal.2018.04.005
- M.M. El-Rabiee, N.H. Helal, G.M.A. El-Hafez and W.A. Badawy, J. Alloys Compd., 459, 466 (2008); https://doi.org/10.1016/j.jallcom.2007.04.293
- N.W. Khun, M. Sumption and G.S. Frankel, J. Appl. Electrochem., 43, 829 (2013); https://doi.org/10.1007/s10800-013-0574-x
- X. Zhao, S.G. Corcoran and M.J. Kelley, J. Appl. Electrochem., 41, 633 (2011); https://doi.org/10.1007/s10800-011-0276-1
- G. Yang, B. Wang, K. Tawfiq, H. Wei, S. Zhou and G. Chen, Surg. Eng., 33, 149 (2017); https://doi.org/10.1080/02670844.2016.1198452
- J. Huo, R. Solanki and J. Mcandrew, Appl. Electrochem., 34, 305 (2004); https://doi.org/10.1023/B:JACH.0000015621.31360.14
- H.H. Abdel-Rahman, A.M. Hafez and A.A. Helmy, Electrochem., 83, 440 (2015); https://doi.org/10.5796/electrochemistry.83.440
- H.H. Abdel-Rahman, S.M. Seleim, A.M. Hafez and A.A. Helmy, Green Chem. Lett. Rev., 8, 88 (2015); https://doi.org/10.1080/17518253.2015.1111430
- F.M. Abouzeid, Int. J. Electrochem. Sci., 11, 7269 (2016); https://doi.org/10.20964/2016.08.20
- F.M. Abouzeid, Egypt. J. Petroleum, 25, 229 (2016); https://doi.org/10.1016/j.ejpe.2015.05.014
- Y. Duan and A.V. Teplyakov, J. Chem. Phys., 146, 052814 (2017); https://doi.org/10.1063/1.4971287
- A.S. Fouda, A.A. Al-Sarawy, F.Sh. Ahmed and H.M. El-Abbasy, Corros. Sci., 51, 485 (2009); https://doi.org/10.1016/j.corsci.2008.10.012
- N.O. Eddy and E.E. Ebenso, Int. J. Electrochem. Sci., 5, 731 (2010).
- M. Abdallah, Corros. Sci., 46, 1981 (2004); https://doi.org/10.1016/j.corsci.2003.09.031
- M.S. Morad, Corros. Sci., 50, 436 (2008); https://doi.org/10.1016/j.corsci.2007.08.018
- G. Karthik and M. Sundaravadivelu, Egypt. J. Petrol., 25, 183 (2016); https://doi.org/10.1016/j.ejpe.2015.04.003
- A.A. Taha, H.H. Abdel Rahman and F.M. Abouzeid, Int. J. Electrochem. Sci., 8, 6751 (2013).
- A.A. Taha, H.H. Abdel Rahman, A.M. Ahmed and F.M. Abouzeid, Int. J. Electrochem. Sci., 8, 9041 (2013).
- I.A. Adejoro, F.K. Ojo and S.K. Obafemi, J. Taibah Univ. Sci., 9, 196 (2015) ; https://doi.org/10.1016/j.jtusci.2014.10.002
- R.T. Loto, C.A. Loto, O. Joseph and G. Olanrewaju, Results in Physics, 6, 305 (2016); https://doi.org/10.1016/j.rinp.2016.05.013.
- M. Abdallaha, I.A. Zaafaranya and B.A.A.L. Jahdaly, J. Mater. Environ. Sci., 7, 1107 (2016).
- L. Bammou, M. Belkhaouda, R. Salghi, O. Benali, A. Zarrouk, H. Zarrok and B. Hammouti, J. Assoc. Arab Univ. Basic Appl. Sci., 16, 83 (2014); https://doi.org/10.1016/j.jaubas.2013.11.001
- M.A. Deyab, J. Taiwan Inst. Chem. Eng., 58, 536 (2016); https://doi.org/10.1016/j.jtice.2015.06.021
- S.A. Umoren, U.M. Eduok, M.M. Solomon and A.P. Udoh, Arab. J. Chem., 9, 209 (2016); https://doi.org/10.1016/j.arabjc.2011.03.008
- L. Li, Q. Qu, W. Bai, F. Yang, Y. Chen, S. Zhang and Z. Ding, Corros. Sci., 59, 249 (2012); https://doi.org/10.1016/j.corsci.2012.03.008
- A.A. Taha, A.M. Ahmed, H.H.A. Rahman and F.M. Abouzeid, Appl. Surf. Sci., 277, 155 (2013); https://doi.org/10.1016/j.apsusc.2013.04.017
- S. Javadian, B. Darbasizadeh, A. Yousefi, F. Ektefa, N. Dalir and J. Kakemam, J. Taiwan Inst. Chem. Eng., 71, 344 (2017); https://doi.org/10.1016/j.jtice.2016.11.014
- H.M. Abd El-Lateef, K.A. Soliman and A.H. Tantawy, J. Mol. Liq., 232, 478 (2017); https://doi.org/10.1016/j.molliq.2017.02.105
- D. Landolt, Electrochim. Acta, 32, 1 (1987); https://doi.org/10.1016/0013-4686(87)87001-9
- R. Galván-Martínez, Afinidad, 62, 448 (2005).
- M.S.M. Abdel-Aziz, A.H. El-Shazly, H.A. Farag and G.H. Sedahmed, Energy Convers. Manage., 52, 2870 (2011); https://doi.org/10.1016/j.enconman.2011.04.001
- M. Bilson and K. Bremhorst, Comparison of Turbulent Scalar Transport in a Pipe and a Rotating Cylinder, Third International Conference on CFD in The Minerals and Process Industries, CSIRO, Melbourne, Australia. 10-12 December (2003).
References
N. Eliaz and O. Nissan, J. Biomed. Mater. Res., 83, 546 (2007); https://doi.org/10.1002/jbm.a.31429
M.A. Deyab, Desalination, 439, 73 (2018); https://doi.org/10.1016/j.desal.2018.04.005
M.M. El-Rabiee, N.H. Helal, G.M.A. El-Hafez and W.A. Badawy, J. Alloys Compd., 459, 466 (2008); https://doi.org/10.1016/j.jallcom.2007.04.293
N.W. Khun, M. Sumption and G.S. Frankel, J. Appl. Electrochem., 43, 829 (2013); https://doi.org/10.1007/s10800-013-0574-x
X. Zhao, S.G. Corcoran and M.J. Kelley, J. Appl. Electrochem., 41, 633 (2011); https://doi.org/10.1007/s10800-011-0276-1
G. Yang, B. Wang, K. Tawfiq, H. Wei, S. Zhou and G. Chen, Surg. Eng., 33, 149 (2017); https://doi.org/10.1080/02670844.2016.1198452
J. Huo, R. Solanki and J. Mcandrew, Appl. Electrochem., 34, 305 (2004); https://doi.org/10.1023/B:JACH.0000015621.31360.14
H.H. Abdel-Rahman, A.M. Hafez and A.A. Helmy, Electrochem., 83, 440 (2015); https://doi.org/10.5796/electrochemistry.83.440
H.H. Abdel-Rahman, S.M. Seleim, A.M. Hafez and A.A. Helmy, Green Chem. Lett. Rev., 8, 88 (2015); https://doi.org/10.1080/17518253.2015.1111430
F.M. Abouzeid, Int. J. Electrochem. Sci., 11, 7269 (2016); https://doi.org/10.20964/2016.08.20
F.M. Abouzeid, Egypt. J. Petroleum, 25, 229 (2016); https://doi.org/10.1016/j.ejpe.2015.05.014
Y. Duan and A.V. Teplyakov, J. Chem. Phys., 146, 052814 (2017); https://doi.org/10.1063/1.4971287
A.S. Fouda, A.A. Al-Sarawy, F.Sh. Ahmed and H.M. El-Abbasy, Corros. Sci., 51, 485 (2009); https://doi.org/10.1016/j.corsci.2008.10.012
N.O. Eddy and E.E. Ebenso, Int. J. Electrochem. Sci., 5, 731 (2010).
M. Abdallah, Corros. Sci., 46, 1981 (2004); https://doi.org/10.1016/j.corsci.2003.09.031
M.S. Morad, Corros. Sci., 50, 436 (2008); https://doi.org/10.1016/j.corsci.2007.08.018
G. Karthik and M. Sundaravadivelu, Egypt. J. Petrol., 25, 183 (2016); https://doi.org/10.1016/j.ejpe.2015.04.003
A.A. Taha, H.H. Abdel Rahman and F.M. Abouzeid, Int. J. Electrochem. Sci., 8, 6751 (2013).
A.A. Taha, H.H. Abdel Rahman, A.M. Ahmed and F.M. Abouzeid, Int. J. Electrochem. Sci., 8, 9041 (2013).
I.A. Adejoro, F.K. Ojo and S.K. Obafemi, J. Taibah Univ. Sci., 9, 196 (2015) ; https://doi.org/10.1016/j.jtusci.2014.10.002
R.T. Loto, C.A. Loto, O. Joseph and G. Olanrewaju, Results in Physics, 6, 305 (2016); https://doi.org/10.1016/j.rinp.2016.05.013.
M. Abdallaha, I.A. Zaafaranya and B.A.A.L. Jahdaly, J. Mater. Environ. Sci., 7, 1107 (2016).
L. Bammou, M. Belkhaouda, R. Salghi, O. Benali, A. Zarrouk, H. Zarrok and B. Hammouti, J. Assoc. Arab Univ. Basic Appl. Sci., 16, 83 (2014); https://doi.org/10.1016/j.jaubas.2013.11.001
M.A. Deyab, J. Taiwan Inst. Chem. Eng., 58, 536 (2016); https://doi.org/10.1016/j.jtice.2015.06.021
S.A. Umoren, U.M. Eduok, M.M. Solomon and A.P. Udoh, Arab. J. Chem., 9, 209 (2016); https://doi.org/10.1016/j.arabjc.2011.03.008
L. Li, Q. Qu, W. Bai, F. Yang, Y. Chen, S. Zhang and Z. Ding, Corros. Sci., 59, 249 (2012); https://doi.org/10.1016/j.corsci.2012.03.008
A.A. Taha, A.M. Ahmed, H.H.A. Rahman and F.M. Abouzeid, Appl. Surf. Sci., 277, 155 (2013); https://doi.org/10.1016/j.apsusc.2013.04.017
S. Javadian, B. Darbasizadeh, A. Yousefi, F. Ektefa, N. Dalir and J. Kakemam, J. Taiwan Inst. Chem. Eng., 71, 344 (2017); https://doi.org/10.1016/j.jtice.2016.11.014
H.M. Abd El-Lateef, K.A. Soliman and A.H. Tantawy, J. Mol. Liq., 232, 478 (2017); https://doi.org/10.1016/j.molliq.2017.02.105
D. Landolt, Electrochim. Acta, 32, 1 (1987); https://doi.org/10.1016/0013-4686(87)87001-9
R. Galván-Martínez, Afinidad, 62, 448 (2005).
M.S.M. Abdel-Aziz, A.H. El-Shazly, H.A. Farag and G.H. Sedahmed, Energy Convers. Manage., 52, 2870 (2011); https://doi.org/10.1016/j.enconman.2011.04.001
M. Bilson and K. Bremhorst, Comparison of Turbulent Scalar Transport in a Pipe and a Rotating Cylinder, Third International Conference on CFD in The Minerals and Process Industries, CSIRO, Melbourne, Australia. 10-12 December (2003).