Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Novel Schiff Base of E-2-(((4-Aminophenyl)imino)methyl)-5-(difluoromethoxy)phenol Fluorescence Chemosensor for Detection of Al3+, Fe2+, Cu2+ Ions and its Application towards Live Cell Imaging
Corresponding Author(s) : Chinnadurai Anbuselvan
Asian Journal of Chemistry,
Vol. 32 No. 4 (2020): Vol 32 Issue 4, 2020
Abstract
A Schiff base compound E-2-(((4-aminophenyl)imino)methyl)-5-(difluoromethoxy)phenol was synthesized and characterized by FT-IR, 1H and 13C NMR, ESI-mass spectroscopy. The synthesized compound also selectively detects Al3+, Fe2+ and Cu2+ without any interference of other metal ions. Fluorescence titrations carried out to find the selectivity of Al3+, Fe2+ and Cu2+ in turn-on system, with binding modes of 2:1 complex, confirmed by Job′s plot. The presence of metal ions Al3+, Fe2+ and Cu2+ with receptor conformed by ESI-MS spectrum, which changed the base value at 298.00 m/z. Moreover, among the binding constant of three metals calculated (20 μM), Al3+ showed a high value of 5.7 × 104 M-1 compared to Fe2+ and Cu2+ metal ions. Prominently, the cytotoxicity activities of probe with HeLa cells were also calculated.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.G. Soni, S.M. White, W.G. Flamm and G.A. Burdock, Regul. Toxicol. Pharmacol., 33, 66 (2001); https://doi.org/10.1006/rtph.2000.1441
- G.C. Woodson, Bone, 22, 695 (1998); https://doi.org/10.1016/S8756-3282(98)00060-X
- D.R. Crapper, S.S. Krishnan and A.J. Dalton, Science, 180, 511 (1973); https://doi.org/10.1126/science.180.4085.511
- D.P. Perl and A.R. Brody, Science, 208, 297 (1980); https://doi.org/10.1126/science.7367858
- E. House, J. Collingwood, A. Khan, O. Korchazkina, G. Berthon and C. Exley, J. Alzheimers Dis., 6, 291 (2004); https://doi.org/10.3233/JAD-2004-6310
- D.Y. Liu, J. Qi, X.Y. Liu, Z.G. Cui, H.X. Chang, J.T. Chen, H.R. He and G.M. Yang, Anal. Methods, 6, 3578 (2014); https://doi.org/10.1039/c4ay00641k
- M. Zhao, L. Ma, M. Zhang, W. Cao, L. Yang and J. Ma, Spectrochim. Acta A Mol. Biomol. Spectrosc., 116, 460 (2013); https://doi.org/10.1016/j.saa.2013.07.069
- L.Y. Yang, Q. Song, K. Damit-Og and H.S. Cao, Sens. Actuators B Chem., 176, 181 (2013); https://doi.org/10.1016/j.snb.2012.10.010
- Z.P. Dong, Y.P. Guo, X. Tian and J.T. Ma, J. Lumin., 134, 635 (2013); https://doi.org/10.1016/j.jlumin.2012.07.016
- S.B. Maity and P.K. Bharadwaj, J. Lumin., 155, 21 (2014); https://doi.org/10.1016/j.jlumin.2014.06.020
- J. Ren and H. Tian, Sensors, 7, 3166 (2007); https://doi.org/10.3390/s7123166
- J. Barcelo and C. Poschenrieder, Environ. Exp. Bot., 48, 75 (2002); https://doi.org/10.1016/S0098-8472(02)00013-8
- Z. Krejpcio and R.W. Wójciak, Pol. J. Environ. Stud., 11, 251 (2002).
- J.S. Perlmutter, L.W. Tempel, K.J. Black, D. Parkinson and R.D. Todd, Neurology, 49, 1432 (1997); https://doi.org/10.1212/WNL.49.5.1432
- K. Soroka, R.S. Vithanage, D.A. Phillips, B. Walker and P.K. Dasgupta, Anal. Chem., 59, 629 (1987); https://doi.org/10.1021/ac00131a019
- P. Aisen, M. Wessling-Resnick and E.A. Leibold, Curr. Opin. Chem. Biol., 3, 200 (1999); https://doi.org/10.1016/S1367-5931(99)80033-7
- E. Beutler, V. Felitti, T. Gelbart and N. Ho, Drug Metab. Dispos., 29, 495 (2001).
- D. Touati, Arch. Biochem. Biophys., 373, 1 (2000); https://doi.org/10.1006/abbi.1999.1518
- K.J. Wallace, M. Gray, Z. Zhong, V.M. Lynch and E.V. Anslyn, Dalton Trans., 14, 2436 (2005); https://doi.org/10.1039/b504496k
- C. Bhaumik, S. Das, D. Maity and S. Baitalik, Dalton Trans., 40, 11795 (2011); https://doi.org/10.1039/c1dt10965k
- G.M. Brittenham and D.G. Badman, Blood, 101, 15 (2003); https://doi.org/10.1182/blood-2002-06-1723
- T. Isoda, I. Urushibara, H. Sato and N. Yamauchi, Sensors, 12, 8405 (2012); https://doi.org/10.3390/s120608405
- S.E. Andria, C.J. Seliskar and W.R. Heineman, Anal. Chem., 82, 1720 (2010); https://doi.org/10.1021/ac902243u
- H. Matsumiya, N. Iki and S. Miyano, Talanta, 62, 337 (2004); https://doi.org/10.1016/j.talanta.2003.08.001
- B.P. Espósito, S. Epsztejn, W. Breuer and Z.I. Cabantchik, Anal. Biochem., 304, 1 (2002); https://doi.org/10.1006/abio.2002.5611
- J.L. Bricks, A. Kovalchuk, C. Trieflinger, M. Nofz, M. Büschel, J. Daub, A.I. Tolmachev and K. Rurack, J. Am. Chem. Soc., 127, 13522 (2005); https://doi.org/10.1021/ja050652t
- L.J. Fan and W.E. Jones, J. Am. Chem. Soc., 128, 6784 (2006); https://doi.org/10.1021/ja0612697
- E.L. Que, D.W. Domaille and C.J. Chang, Chem. Rev., 108, 1517 (2008); https://doi.org/10.1021/cr078203u
- C. Duncan and A.R. White, Metallomics, 4, 127 (2012); https://doi.org/10.1039/C2MT00174H
- L. Quan, T. Sun, T.T. Lin, W.H. Guan, X.G. Zheng, M. Xie and Z.G. Jing, J. Fluoresc., 24, 841 (2014); https://doi.org/10.1007/s10895-014-1360-9
- S. Chemate and N. Sekar, RSC Adv., 5, 27282 (2015); https://doi.org/10.1039/C5RA00123D
- P.G. Sutariya, A. Pandya, A. Lodha and S.K. Menon, Analyst, 138, 2531 (2013); https://doi.org/10.1039/c3an00209h
- P. Jiang and Z. Guo, Coord. Chem. Rev., 248, 205 (2004); https://doi.org/10.1016/j.cct.2003.10.013
- J.S. Kim and D.T. Quang, Chem. Rev., 107, 3780 (2007); https://doi.org/10.1021/cr068046j
- Z. Xu, J. Yoon and D.R. Spring, Chem. Soc. Rev., 39, 1996 (2010); https://doi.org/10.1039/b916287a
- P. Kaur and K. Singh, RSC Adv., 4, 11980 (2014); https://doi.org/10.1039/C3RA46967K
- N. Singh, N. Kaur, B. McCaughan and J.F. Callan, Tetrahedron Lett., 51, 3385 (2010); https://doi.org/10.1016/j.tetlet.2010.04.099
- G.J. He, X.W. Zhao, X.L. Zhang, H.J. Fan, S. Wu, H.Q. Li, C. He and C.Y. Duan, New J. Chem., 34, 1055 (2010); https://doi.org/10.1039/c0nj00132e
- S. Khatua, S.H. Choi, J. Lee, J.O. Huh, Y. Do and D.G. Churchill, Inorg. Chem., 48, 1799 (2009); https://doi.org/10.1021/ic802314u
- C.W. Yu, Y.Y. Wen and J. Zhang, Sensors, 14, 21375 (2014); https://doi.org/10.3390/s141121375
- Y. Jeong and J. Yoon, Inorg. Chim. Acta, 381, 2 (2012); https://doi.org/10.1016/j.ica.2011.09.011
- M.A. Qazi, I. Qureshi and S. Memon, J. Mol. Struct., 975, 69 (2010); https://doi.org/10.1016/j.molstruc.2010.03.088
- X.L. Ni, X. Zeng, C. Redshaw and T. Yamato, Tetrahedron, 67, 3248 (2011); https://doi.org/10.1016/j.tet.2011.03.008
- S. Patra, R. Lo, A. Chakraborty, R. Gunupuru, D. Maity, B. Ganguly and P. Paul, Polyhedron, 50, 592 (2013); https://doi.org/10.1016/j.poly.2012.12.002
- S. Wu, K. Zhang, Y. Wang, D. Mao, X. Liu, J. Yu and L. Wang, Tetrahedron Lett., 55, 351 (2014); https://doi.org/10.1016/j.tetlet.2013.11.024
- L.-J. Ma, W. Cao, J. Liu, M. Zhang and L. Yang, Sens. Actuators B Chem., 181, 782 (2013); https://doi.org/10.1016/j.snb.2013.01.095
- J. Wang, L. Long, D. Xie and X. Song, Sens. Actuators B Chem., 177, 27 (2013); https://doi.org/10.1016/j.snb.2012.10.077
- B. Tang, T. Yue, J. Wu, Y. Dong, Y. Ding and H. Wang, Talanta, 64, 955 (2004); https://doi.org/10.1016/j.talanta.2004.04.016
- Y.S. Wu, C.Y. Li, Y.F. Li, J.L. Tang and D. Liu, Sens. Actuators B Chem., 203, 712 (2014); https://doi.org/10.1016/j.snb.2014.07.046
- E. Dhineshkumar, M. Iyappan and C. Anbuselvan, J. Mol. Struct., 1177, 545 (2019); https://doi.org/10.1016/j.molstruc.2018.09.088
- D. Ezhumalai, I. Mathivanan and A. Chinnadurai, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 199, 209 (2018); https://doi.org/10.1016/j.saa.2018.03.053
- R. Yang, K. Li, K. Wang, F. Zhao, N. Li and F. Liu, Anal. Chem., 75, 612 (2003); https://doi.org/10.1021/ac020467n
- Y.-K. Tsui, S. Devaraj and Y.-P. Yen, Sens. Actuators B Chem., 161, 510 (2012); https://doi.org/10.1016/j.snb.2011.10.069
References
M.G. Soni, S.M. White, W.G. Flamm and G.A. Burdock, Regul. Toxicol. Pharmacol., 33, 66 (2001); https://doi.org/10.1006/rtph.2000.1441
G.C. Woodson, Bone, 22, 695 (1998); https://doi.org/10.1016/S8756-3282(98)00060-X
D.R. Crapper, S.S. Krishnan and A.J. Dalton, Science, 180, 511 (1973); https://doi.org/10.1126/science.180.4085.511
D.P. Perl and A.R. Brody, Science, 208, 297 (1980); https://doi.org/10.1126/science.7367858
E. House, J. Collingwood, A. Khan, O. Korchazkina, G. Berthon and C. Exley, J. Alzheimers Dis., 6, 291 (2004); https://doi.org/10.3233/JAD-2004-6310
D.Y. Liu, J. Qi, X.Y. Liu, Z.G. Cui, H.X. Chang, J.T. Chen, H.R. He and G.M. Yang, Anal. Methods, 6, 3578 (2014); https://doi.org/10.1039/c4ay00641k
M. Zhao, L. Ma, M. Zhang, W. Cao, L. Yang and J. Ma, Spectrochim. Acta A Mol. Biomol. Spectrosc., 116, 460 (2013); https://doi.org/10.1016/j.saa.2013.07.069
L.Y. Yang, Q. Song, K. Damit-Og and H.S. Cao, Sens. Actuators B Chem., 176, 181 (2013); https://doi.org/10.1016/j.snb.2012.10.010
Z.P. Dong, Y.P. Guo, X. Tian and J.T. Ma, J. Lumin., 134, 635 (2013); https://doi.org/10.1016/j.jlumin.2012.07.016
S.B. Maity and P.K. Bharadwaj, J. Lumin., 155, 21 (2014); https://doi.org/10.1016/j.jlumin.2014.06.020
J. Ren and H. Tian, Sensors, 7, 3166 (2007); https://doi.org/10.3390/s7123166
J. Barcelo and C. Poschenrieder, Environ. Exp. Bot., 48, 75 (2002); https://doi.org/10.1016/S0098-8472(02)00013-8
Z. Krejpcio and R.W. Wójciak, Pol. J. Environ. Stud., 11, 251 (2002).
J.S. Perlmutter, L.W. Tempel, K.J. Black, D. Parkinson and R.D. Todd, Neurology, 49, 1432 (1997); https://doi.org/10.1212/WNL.49.5.1432
K. Soroka, R.S. Vithanage, D.A. Phillips, B. Walker and P.K. Dasgupta, Anal. Chem., 59, 629 (1987); https://doi.org/10.1021/ac00131a019
P. Aisen, M. Wessling-Resnick and E.A. Leibold, Curr. Opin. Chem. Biol., 3, 200 (1999); https://doi.org/10.1016/S1367-5931(99)80033-7
E. Beutler, V. Felitti, T. Gelbart and N. Ho, Drug Metab. Dispos., 29, 495 (2001).
D. Touati, Arch. Biochem. Biophys., 373, 1 (2000); https://doi.org/10.1006/abbi.1999.1518
K.J. Wallace, M. Gray, Z. Zhong, V.M. Lynch and E.V. Anslyn, Dalton Trans., 14, 2436 (2005); https://doi.org/10.1039/b504496k
C. Bhaumik, S. Das, D. Maity and S. Baitalik, Dalton Trans., 40, 11795 (2011); https://doi.org/10.1039/c1dt10965k
G.M. Brittenham and D.G. Badman, Blood, 101, 15 (2003); https://doi.org/10.1182/blood-2002-06-1723
T. Isoda, I. Urushibara, H. Sato and N. Yamauchi, Sensors, 12, 8405 (2012); https://doi.org/10.3390/s120608405
S.E. Andria, C.J. Seliskar and W.R. Heineman, Anal. Chem., 82, 1720 (2010); https://doi.org/10.1021/ac902243u
H. Matsumiya, N. Iki and S. Miyano, Talanta, 62, 337 (2004); https://doi.org/10.1016/j.talanta.2003.08.001
B.P. Espósito, S. Epsztejn, W. Breuer and Z.I. Cabantchik, Anal. Biochem., 304, 1 (2002); https://doi.org/10.1006/abio.2002.5611
J.L. Bricks, A. Kovalchuk, C. Trieflinger, M. Nofz, M. Büschel, J. Daub, A.I. Tolmachev and K. Rurack, J. Am. Chem. Soc., 127, 13522 (2005); https://doi.org/10.1021/ja050652t
L.J. Fan and W.E. Jones, J. Am. Chem. Soc., 128, 6784 (2006); https://doi.org/10.1021/ja0612697
E.L. Que, D.W. Domaille and C.J. Chang, Chem. Rev., 108, 1517 (2008); https://doi.org/10.1021/cr078203u
C. Duncan and A.R. White, Metallomics, 4, 127 (2012); https://doi.org/10.1039/C2MT00174H
L. Quan, T. Sun, T.T. Lin, W.H. Guan, X.G. Zheng, M. Xie and Z.G. Jing, J. Fluoresc., 24, 841 (2014); https://doi.org/10.1007/s10895-014-1360-9
S. Chemate and N. Sekar, RSC Adv., 5, 27282 (2015); https://doi.org/10.1039/C5RA00123D
P.G. Sutariya, A. Pandya, A. Lodha and S.K. Menon, Analyst, 138, 2531 (2013); https://doi.org/10.1039/c3an00209h
P. Jiang and Z. Guo, Coord. Chem. Rev., 248, 205 (2004); https://doi.org/10.1016/j.cct.2003.10.013
J.S. Kim and D.T. Quang, Chem. Rev., 107, 3780 (2007); https://doi.org/10.1021/cr068046j
Z. Xu, J. Yoon and D.R. Spring, Chem. Soc. Rev., 39, 1996 (2010); https://doi.org/10.1039/b916287a
P. Kaur and K. Singh, RSC Adv., 4, 11980 (2014); https://doi.org/10.1039/C3RA46967K
N. Singh, N. Kaur, B. McCaughan and J.F. Callan, Tetrahedron Lett., 51, 3385 (2010); https://doi.org/10.1016/j.tetlet.2010.04.099
G.J. He, X.W. Zhao, X.L. Zhang, H.J. Fan, S. Wu, H.Q. Li, C. He and C.Y. Duan, New J. Chem., 34, 1055 (2010); https://doi.org/10.1039/c0nj00132e
S. Khatua, S.H. Choi, J. Lee, J.O. Huh, Y. Do and D.G. Churchill, Inorg. Chem., 48, 1799 (2009); https://doi.org/10.1021/ic802314u
C.W. Yu, Y.Y. Wen and J. Zhang, Sensors, 14, 21375 (2014); https://doi.org/10.3390/s141121375
Y. Jeong and J. Yoon, Inorg. Chim. Acta, 381, 2 (2012); https://doi.org/10.1016/j.ica.2011.09.011
M.A. Qazi, I. Qureshi and S. Memon, J. Mol. Struct., 975, 69 (2010); https://doi.org/10.1016/j.molstruc.2010.03.088
X.L. Ni, X. Zeng, C. Redshaw and T. Yamato, Tetrahedron, 67, 3248 (2011); https://doi.org/10.1016/j.tet.2011.03.008
S. Patra, R. Lo, A. Chakraborty, R. Gunupuru, D. Maity, B. Ganguly and P. Paul, Polyhedron, 50, 592 (2013); https://doi.org/10.1016/j.poly.2012.12.002
S. Wu, K. Zhang, Y. Wang, D. Mao, X. Liu, J. Yu and L. Wang, Tetrahedron Lett., 55, 351 (2014); https://doi.org/10.1016/j.tetlet.2013.11.024
L.-J. Ma, W. Cao, J. Liu, M. Zhang and L. Yang, Sens. Actuators B Chem., 181, 782 (2013); https://doi.org/10.1016/j.snb.2013.01.095
J. Wang, L. Long, D. Xie and X. Song, Sens. Actuators B Chem., 177, 27 (2013); https://doi.org/10.1016/j.snb.2012.10.077
B. Tang, T. Yue, J. Wu, Y. Dong, Y. Ding and H. Wang, Talanta, 64, 955 (2004); https://doi.org/10.1016/j.talanta.2004.04.016
Y.S. Wu, C.Y. Li, Y.F. Li, J.L. Tang and D. Liu, Sens. Actuators B Chem., 203, 712 (2014); https://doi.org/10.1016/j.snb.2014.07.046
E. Dhineshkumar, M. Iyappan and C. Anbuselvan, J. Mol. Struct., 1177, 545 (2019); https://doi.org/10.1016/j.molstruc.2018.09.088
D. Ezhumalai, I. Mathivanan and A. Chinnadurai, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 199, 209 (2018); https://doi.org/10.1016/j.saa.2018.03.053
R. Yang, K. Li, K. Wang, F. Zhao, N. Li and F. Liu, Anal. Chem., 75, 612 (2003); https://doi.org/10.1021/ac020467n
Y.-K. Tsui, S. Devaraj and Y.-P. Yen, Sens. Actuators B Chem., 161, 510 (2012); https://doi.org/10.1016/j.snb.2011.10.069