Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Antineoplastic Activity of Alkylaminolapachol Analogues and their Copper Complexes against MDA-MB-231 Human Breast Cancer Cell Lines
Corresponding Author(s) : M.Y. Khaladkar
Asian Journal of Chemistry,
Vol. 32 No. 4 (2020): Vol 32 Issue 4, 2020
Abstract
In present study, three alkylamino substituted hydroxynaphthoquinone analogues of naturally occurring bioactive lapachol are synthesized. Further, copper(II) complexes of these ligands have been synthesized using hassle free modified grindstone method. Both ligands and copper(II) complexes were characterized using UV-visible spectroscopy, FTIR, elemental analysis and NMR spectra. Cell viability assay of the compound was carried out against growth of MDA-MB-231 human breast cancer cell lines. A better tumorocidal activity was observed for ligands and their copper(II) complexes in concentration of 2.95 to 0.11 mmol/L. Antineoplastic activity of copper(II) complexes was found to be more than parent ligands. Antimicrobial assay results showed that compound exhibit better activity against organisms under study. Antimicrobial susceptibility of compounds was carried out against culture of E. coli K12 (RP4), B. subtilis (pUB110), K. pneumoniae and S. paratyphi. The lowest MIC of < 0.20 mg/mL was obtained for L-3 against S. paratyphi. Cyclic voltammetry of ligand and complexes performed in non-aqueous system shows that ligand exhibits classical two step redox couple corresponds to the formation of semiquinone and catechole moieties in solution state at characteristic potential values. Whereas cyclic voltammogram of copper(II) complexes exhibit additional peak at characteristic potential corresponds to reversible redox reaction of central Cu(II) ion in complexes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Jain, R. Kapadia, R.N. Jadeja, M.C. Thounaojam, R.V. Devkar and S.H. Mishra, Asian Pac. J. Trop. Biomed., 2, 1918 (2012); https://doi.org/10.1016/S2221-1691(12)60521-8
- S.R. Paiva, L.A. Lima, M.R. Figueiredo and M.A.C. Kaplan, An. Acad. Bras. Cienc., 76, 499 (2004); https://doi.org/10.1590/S0001-37652004000300004
- S. Padhye, P. Dandawate, M. Yusufi, A. Ahmad and F.H. Sarkar, Med. Res. Rev., 32, 1131 (2012); https://doi.org/10.1002/med.20235
- A.V. Pinto and S.L. de Castro, Molecules, 14, 4570 (2009); https://doi.org/10.3390/molecules14114570
- B. Kiran Aithal, M.R. Sunil Kumar, B. Nageshwar Rao, N. Udupa and B.S. Satish Rao, Cell Biol. Int., 33, 1039 (2009); https://doi.org/10.1016/j.cellbi.2009.06.018
- S.M.G. Sayeed, S.A. Sayeed, S. Ashraf, S. Naz, R. Siddiqi, R. Ali and M.A. Mesaik, Pak. J. Bot., 45, 1431 (2013).
- L.I. Lopez-Lopez, S.D.N. Nery-Flores, S.Y. Silva-Belmares and A. SaenzGalindo, Vitae Rev. Fac. Quim. Farm., 21, 248 (2014).
- M.A. Souza, S. Johann, L.A.R.S. Lima, F.F. Campos, I.C. Mendes, H. Beraldo, E.M. Souza-Fagundes, P.S. Cisalpino, C.A. Rosa, T.M.A. Alves, N.P. Sa and C.L. Zani, Mem. Inst. Oswaldo Cruz, 108, 342 (2013); https://doi.org/10.1590/S0074-02762013000300013
- D.L. Stout and F.F. Becker, Cancer Res., 46, 2693 (1986).
- D.R. Williams, Chem. Rev., 72, 203 (1972); https://doi.org/10.1021/cr60277a001
- M.J. Seven and L.A. Johnson, Metal Binding in Medicine, Lippincott Co.: Philadelphia P.A., edn 4 (1960).
- D.R. Williams, The Metal of Life: The Solution Chemistry of Metal ions in Biological System, Van Nostrand: London (1971).
- M.J. Cleare and J.D. Hoeschele, Bioinorg. Chem., 2, 187 (1973); https://doi.org/10.1016/S0006-3061(00)80249-5
- A. Furst, The Chemistry of Chelation in Cancer, Springfield: Illinois, edn 3 (1963).
- Z.F. Plyta, T. Li, V.P. Papageorgiou, A.S. Mellidis, A.N. Assimopoulou, E.N. Pitsinos and E.A. Couladouros, Bioorg. Med. Chem. Lett., 8, 3385 (1998); https://doi.org/10.1016/S0960-894X(98)00600-3
- N. Gokhale, S. Padhye, C. Newton and R. Pritchard, Met. Based Drugs, 7, 121 (2000); https://doi.org/10.1155/MBD.2000.121
- A.J. Alanis, Arch. Med. Res., 36, 697 (2005); https://doi.org/10.1016/j.arcmed.2005.06.009
- M. Davis, J. Sci., 264, 375 (1994).
- M.H. Kollef and V.J. Fraser, Ann. Intern. Med., 134, 298 (2001); https://doi.org/10.7326/0003-4819-134-4-200102200-00014
- H.H. Thorp, J.E. Sarneski, G.W. Brudvig and R.H. Crabtree, J. Am. Chem. Soc., 111, 9249 (1989); https://doi.org/10.1021/ja00208a029
- L.S. Garcia, Broth Microdilution MIC Test, Clinical Microbiology Procedures Handbook, American Society for Microbiology, edn 3 (2010).
- P.P. Mansara, R.A. Deshpande, M.M. Vaidya and R. Kaul-Ghanekar, PLoS One, 10, e0136542 (2015); https://doi.org/10.1371/journal.pone.0136542
- A. Thangamani, J. Appl. Adv. Res., 2, 78 (2017); https://doi.org/10.21839/jaar.2017.v2i2.65
- G. Nagendrappa, Resonance, 7, 64 (2002).
- S. Salunke-Gawali, S. Rane, K. Boukheddaden, E. Codjovi, J. Linares, F. Varret and P. Bakar, Indian J. Chem., 43A, 2563 (2004).
- O. Pawar, A. Patekar, A. Khan, L. Kathawate, S. Haram, G. Markad, V. Puranik and S. Salunke-Gawali, J. Mol. Struct., 1059, 68 (2014); https://doi.org/10.1016/j.molstruc.2013.11.029
- M.O. Goulart, P. Falkowski, T. Ossowski and A. Liwo, Bioelectrochem., 59, 85 (2003); https://doi.org/10.1016/S1567-5394(03)00005-7
- K. Manvizhi and K.R. Sankaran, Int. J. Sci. Res. Mod. Educ., 1, 171 (2016).
- W. Luo, X.-G. Meng, J.-F. Xiang, Y. Duan, G.-Z. Cheng and Z.-P. Ji, Inorg. Chim. Acta, 361, 2667 (2008); https://doi.org/10.1016/j.ica.2007.11.030
- C. Frontana, B.A. Frontana-Uribe and I. González, J. Electroanal. Chem., 573, 307 (2004); https://doi.org/10.1016/j.jelechem.2004.07.017
References
M. Jain, R. Kapadia, R.N. Jadeja, M.C. Thounaojam, R.V. Devkar and S.H. Mishra, Asian Pac. J. Trop. Biomed., 2, 1918 (2012); https://doi.org/10.1016/S2221-1691(12)60521-8
S.R. Paiva, L.A. Lima, M.R. Figueiredo and M.A.C. Kaplan, An. Acad. Bras. Cienc., 76, 499 (2004); https://doi.org/10.1590/S0001-37652004000300004
S. Padhye, P. Dandawate, M. Yusufi, A. Ahmad and F.H. Sarkar, Med. Res. Rev., 32, 1131 (2012); https://doi.org/10.1002/med.20235
A.V. Pinto and S.L. de Castro, Molecules, 14, 4570 (2009); https://doi.org/10.3390/molecules14114570
B. Kiran Aithal, M.R. Sunil Kumar, B. Nageshwar Rao, N. Udupa and B.S. Satish Rao, Cell Biol. Int., 33, 1039 (2009); https://doi.org/10.1016/j.cellbi.2009.06.018
S.M.G. Sayeed, S.A. Sayeed, S. Ashraf, S. Naz, R. Siddiqi, R. Ali and M.A. Mesaik, Pak. J. Bot., 45, 1431 (2013).
L.I. Lopez-Lopez, S.D.N. Nery-Flores, S.Y. Silva-Belmares and A. SaenzGalindo, Vitae Rev. Fac. Quim. Farm., 21, 248 (2014).
M.A. Souza, S. Johann, L.A.R.S. Lima, F.F. Campos, I.C. Mendes, H. Beraldo, E.M. Souza-Fagundes, P.S. Cisalpino, C.A. Rosa, T.M.A. Alves, N.P. Sa and C.L. Zani, Mem. Inst. Oswaldo Cruz, 108, 342 (2013); https://doi.org/10.1590/S0074-02762013000300013
D.L. Stout and F.F. Becker, Cancer Res., 46, 2693 (1986).
D.R. Williams, Chem. Rev., 72, 203 (1972); https://doi.org/10.1021/cr60277a001
M.J. Seven and L.A. Johnson, Metal Binding in Medicine, Lippincott Co.: Philadelphia P.A., edn 4 (1960).
D.R. Williams, The Metal of Life: The Solution Chemistry of Metal ions in Biological System, Van Nostrand: London (1971).
M.J. Cleare and J.D. Hoeschele, Bioinorg. Chem., 2, 187 (1973); https://doi.org/10.1016/S0006-3061(00)80249-5
A. Furst, The Chemistry of Chelation in Cancer, Springfield: Illinois, edn 3 (1963).
Z.F. Plyta, T. Li, V.P. Papageorgiou, A.S. Mellidis, A.N. Assimopoulou, E.N. Pitsinos and E.A. Couladouros, Bioorg. Med. Chem. Lett., 8, 3385 (1998); https://doi.org/10.1016/S0960-894X(98)00600-3
N. Gokhale, S. Padhye, C. Newton and R. Pritchard, Met. Based Drugs, 7, 121 (2000); https://doi.org/10.1155/MBD.2000.121
A.J. Alanis, Arch. Med. Res., 36, 697 (2005); https://doi.org/10.1016/j.arcmed.2005.06.009
M. Davis, J. Sci., 264, 375 (1994).
M.H. Kollef and V.J. Fraser, Ann. Intern. Med., 134, 298 (2001); https://doi.org/10.7326/0003-4819-134-4-200102200-00014
H.H. Thorp, J.E. Sarneski, G.W. Brudvig and R.H. Crabtree, J. Am. Chem. Soc., 111, 9249 (1989); https://doi.org/10.1021/ja00208a029
L.S. Garcia, Broth Microdilution MIC Test, Clinical Microbiology Procedures Handbook, American Society for Microbiology, edn 3 (2010).
P.P. Mansara, R.A. Deshpande, M.M. Vaidya and R. Kaul-Ghanekar, PLoS One, 10, e0136542 (2015); https://doi.org/10.1371/journal.pone.0136542
A. Thangamani, J. Appl. Adv. Res., 2, 78 (2017); https://doi.org/10.21839/jaar.2017.v2i2.65
G. Nagendrappa, Resonance, 7, 64 (2002).
S. Salunke-Gawali, S. Rane, K. Boukheddaden, E. Codjovi, J. Linares, F. Varret and P. Bakar, Indian J. Chem., 43A, 2563 (2004).
O. Pawar, A. Patekar, A. Khan, L. Kathawate, S. Haram, G. Markad, V. Puranik and S. Salunke-Gawali, J. Mol. Struct., 1059, 68 (2014); https://doi.org/10.1016/j.molstruc.2013.11.029
M.O. Goulart, P. Falkowski, T. Ossowski and A. Liwo, Bioelectrochem., 59, 85 (2003); https://doi.org/10.1016/S1567-5394(03)00005-7
K. Manvizhi and K.R. Sankaran, Int. J. Sci. Res. Mod. Educ., 1, 171 (2016).
W. Luo, X.-G. Meng, J.-F. Xiang, Y. Duan, G.-Z. Cheng and Z.-P. Ji, Inorg. Chim. Acta, 361, 2667 (2008); https://doi.org/10.1016/j.ica.2007.11.030
C. Frontana, B.A. Frontana-Uribe and I. González, J. Electroanal. Chem., 573, 307 (2004); https://doi.org/10.1016/j.jelechem.2004.07.017