Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Adsorption of Cr(VI) Ions using Activated Carbon Produced from Indian Water Chestnut (Trapa natans) Peel Powder
Corresponding Author(s) : Maninder Singh
Asian Journal of Chemistry,
Vol. 32 No. 4 (2020): Vol 32 Issue 4, 2020
Abstract
The indiscriminate discharge of heavy metals into water and soil from anthropogenic practices is becoming prominent threat to the environment. Heavy metals like chromium, cadmium, lead, arsenic, nickel etc. are heavily toxic and carcinogenic in nature. This study emphasizes the adequacy of activated water chest nut (Trapa natans) peel powder as a new adsorbent material for removal of chromium(VI) metal ions. Adsorption experiments were performed in batch process. Various process parameters like contact time, temperature, solution pH, dose of adsorbent, metal ion concentration etc. were optimized. The physico-chemical properties of adsorbent material were characterized by FTIR and XRD. The morphology, topology of adsorbent surface was characterized by scanning electron microscopy (SEM) and Brunauer, Emmett and Teller (BET) which revealed a highly porous structure and available specific surface area. The adsorption capacity (maximum) was counted as 59.17 mg/g and specific surface area was found 23.467 m2/g at a pH 7. The adsorption process for Cr(VI) ions was in a good agreement with Langmuir isotherm. The process also followed pseudo second order kinetics. The obtained result shows that activated water chest nut (Trapa natans) peel powder (AWCPP) can be a hopeful low-cost and eco-friendly bio-adsorbent for removal of Cr(VI) metal ions and also better adsorbent than other various reported adsorbents.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Ali, E. Khan and I. Ilahi, J. Chem., 2019, 6730305 (2019); https://doi.org/10.1155/2019/6730305
- D.S. Malik, C.K. Jain and A.K. Yadav, Appl. Water Sci., 7, 2113 (2017); https://doi.org/10.1007/s13201-016-0401-8
- A. Attia, S.A. Khedr and S.A. Elkholy, Braz. J. Chem. Eng., 27, 183 (2010); https://doi.org/10.1590/S0104-66322010000100016
- S.J. Mulware, 3 Biotech, 3, 85 (2013); https://doi.org/10.1007/s13205-012-0072-6
- P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla and D.J. Sutton, Experientia Suppl., 101, 133 (2012); https://doi.org/10.1007/978-3-7643-8340-4_6
- H.G. Park, T.W. Kim, M.Y. Chae and I.K. Yoo, Process Biochem., 42, 1371 (2007); https://doi.org/10.1016/j.procbio.2007.06.016
- P. Rajasulochana and V. Preethy, Resour.-Effic. Technol., 2, 175 (2016); https://doi.org/10.1016/j.reffit.2016.09.004
- J. Landaburu-Aguirre, V. García, E. Pongrácz and R.L. Keiski, Desalination, 240, 262 (2009); https://doi.org/10.1016/j.desal.2007.11.077
- Q. Chang, M. Zhang and J. Wang, J. Hazard. Mater., 169, 621 (2009); https://doi.org/10.1016/j.jhazmat.2009.03.144
- B. Alyüz and S. Veli, J. Hazard. Mater., 167, 482 (2009); https://doi.org/10.1016/j.jhazmat.2009.01.006
- S. Tangjuank, N. Insuk, J. Tontrakoon and V. Udeye, World Acad. Sci. Eng. Technol., 3, 110 (2009).
- K. Khulbe and T. Matsuura, Appl. Water Sci., 8, 19 (2018); https://doi.org/10.1007/s13201-018-0661-6
- F. Fu and Q. Wang, J. Environ. Manage., 92, 407 (2011); https://doi.org/10.1016/j.jenvman.2010.11.011
- M.A. Barakat, Arab. J. Chem., 4, 361 (2011); https://doi.org/10.1016/j.arabjc.2010.07.019
- F. Akhtar, L. Andersson, S. Ogunwumi, N. Hedin and L. Bergström, J. Eur. Ceram. Soc., 34, 1643 (2014); https://doi.org/10.1016/j.jeurceramsoc.2014.01.008
- I. Ali, A.A. Basheer, X.Y. Mbianda, A. Burakov, E. Galunin, I. Burakova, E. Mkrtchyan, A. Tkachev and V. Grachev, Environ. Int., 127, 160 (2019); https://doi.org/10.1016/j.envint.2019.03.029
- S. Abdulrazak, K. Hussaini and H.M. Sani, Appl. Water Sci., 7, 3151 (2017); https://doi.org/10.1007/s13201-016-0460-x
- G. Bhanjana, N. Dilbaghi, K.H. Kim and S. Kumar, J. Mol. Liq., 244, 506 (2017); https://doi.org/10.1016/j.molliq.2017.09.034
- S. Kumar, G. Bhanjana, N. Dilbaghi and A. Umar, J. Nanosci. Nanotechnol., 14, 7054 (2014); https://doi.org/10.1166/jnn.2014.9236
- Z. Xie, W. Guan, F. Ji, Z. Song and Y. Zhao, J. Chem., 2014, 491912 (2014); https://doi.org/10.1155/2014/491912
- C. Saka, J. Anal. Appl. Pyrolysis, 95, 21 (2012); https://doi.org/10.1016/j.jaap.2011.12.020
- R. Rajbhandari, L.K. Shrestha and R.R. Pradhananga, J. Inst. Eng., 8, 211 (1970); https://doi.org/10.3126/jie.v8i1-2.5113
- J.A. Slotwinski, E.J. Garboczi and K.M. Hebenstreit, J. Res. Natl. Inst. Stand. Technol., 119, 494 (2014); https://doi.org/10.6028/jres.119.019
- S. Gupta and A. Kumar, Appl. Water Sci., 9, 96 (2019); https://doi.org/10.1007/s13201-019-0973-1
- S. Alhan, M. Nehra, N. Dilbaghi, N.K. Singhal, K.H. Kim and S. Kumar, Environ. Res., 173, 411 (2019); https://doi.org/10.1016/j.envres.2019.03.061
- N. Ayawei, A.N. Ebelegi and D. Wankasi, J. Chem., 2017, 3039817 (2017); https://doi.org/10.1155/2017/3039817
- H. Gao, Y. Liu, G. Zeng, W. Xu, T. Li and W. Xia, J. Hazard. Mater., 150, 446 (2008); https://doi.org/10.1016/j.jhazmat.2007.04.126
- M. Jain, V.K. Garg and K. Kadirvelu, J. Hazard. Mater., 162, 365 (2009); https://doi.org/10.1016/j.jhazmat.2008.05.048
- A.G.D. Prasad and M.A. Abdullah, BioResources, 5, 838 (2010).
- E. Mekonnen, M. Yitbarek and T.R. Soreta, S. Afr. J. Chem., 68, 45 (2015); https://doi.org/10.17159/0379-4350/2015/v68a7
- S.S. Sonawane, S.S. Chhajed, S.S. Attar and S.J. Kshirsagar, J. Anal. Sci. Technol., 10, 1 (2019); https://doi.org/10.1186/s40543-018-0160-2
References
H. Ali, E. Khan and I. Ilahi, J. Chem., 2019, 6730305 (2019); https://doi.org/10.1155/2019/6730305
D.S. Malik, C.K. Jain and A.K. Yadav, Appl. Water Sci., 7, 2113 (2017); https://doi.org/10.1007/s13201-016-0401-8
A. Attia, S.A. Khedr and S.A. Elkholy, Braz. J. Chem. Eng., 27, 183 (2010); https://doi.org/10.1590/S0104-66322010000100016
S.J. Mulware, 3 Biotech, 3, 85 (2013); https://doi.org/10.1007/s13205-012-0072-6
P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla and D.J. Sutton, Experientia Suppl., 101, 133 (2012); https://doi.org/10.1007/978-3-7643-8340-4_6
H.G. Park, T.W. Kim, M.Y. Chae and I.K. Yoo, Process Biochem., 42, 1371 (2007); https://doi.org/10.1016/j.procbio.2007.06.016
P. Rajasulochana and V. Preethy, Resour.-Effic. Technol., 2, 175 (2016); https://doi.org/10.1016/j.reffit.2016.09.004
J. Landaburu-Aguirre, V. García, E. Pongrácz and R.L. Keiski, Desalination, 240, 262 (2009); https://doi.org/10.1016/j.desal.2007.11.077
Q. Chang, M. Zhang and J. Wang, J. Hazard. Mater., 169, 621 (2009); https://doi.org/10.1016/j.jhazmat.2009.03.144
B. Alyüz and S. Veli, J. Hazard. Mater., 167, 482 (2009); https://doi.org/10.1016/j.jhazmat.2009.01.006
S. Tangjuank, N. Insuk, J. Tontrakoon and V. Udeye, World Acad. Sci. Eng. Technol., 3, 110 (2009).
K. Khulbe and T. Matsuura, Appl. Water Sci., 8, 19 (2018); https://doi.org/10.1007/s13201-018-0661-6
F. Fu and Q. Wang, J. Environ. Manage., 92, 407 (2011); https://doi.org/10.1016/j.jenvman.2010.11.011
M.A. Barakat, Arab. J. Chem., 4, 361 (2011); https://doi.org/10.1016/j.arabjc.2010.07.019
F. Akhtar, L. Andersson, S. Ogunwumi, N. Hedin and L. Bergström, J. Eur. Ceram. Soc., 34, 1643 (2014); https://doi.org/10.1016/j.jeurceramsoc.2014.01.008
I. Ali, A.A. Basheer, X.Y. Mbianda, A. Burakov, E. Galunin, I. Burakova, E. Mkrtchyan, A. Tkachev and V. Grachev, Environ. Int., 127, 160 (2019); https://doi.org/10.1016/j.envint.2019.03.029
S. Abdulrazak, K. Hussaini and H.M. Sani, Appl. Water Sci., 7, 3151 (2017); https://doi.org/10.1007/s13201-016-0460-x
G. Bhanjana, N. Dilbaghi, K.H. Kim and S. Kumar, J. Mol. Liq., 244, 506 (2017); https://doi.org/10.1016/j.molliq.2017.09.034
S. Kumar, G. Bhanjana, N. Dilbaghi and A. Umar, J. Nanosci. Nanotechnol., 14, 7054 (2014); https://doi.org/10.1166/jnn.2014.9236
Z. Xie, W. Guan, F. Ji, Z. Song and Y. Zhao, J. Chem., 2014, 491912 (2014); https://doi.org/10.1155/2014/491912
C. Saka, J. Anal. Appl. Pyrolysis, 95, 21 (2012); https://doi.org/10.1016/j.jaap.2011.12.020
R. Rajbhandari, L.K. Shrestha and R.R. Pradhananga, J. Inst. Eng., 8, 211 (1970); https://doi.org/10.3126/jie.v8i1-2.5113
J.A. Slotwinski, E.J. Garboczi and K.M. Hebenstreit, J. Res. Natl. Inst. Stand. Technol., 119, 494 (2014); https://doi.org/10.6028/jres.119.019
S. Gupta and A. Kumar, Appl. Water Sci., 9, 96 (2019); https://doi.org/10.1007/s13201-019-0973-1
S. Alhan, M. Nehra, N. Dilbaghi, N.K. Singhal, K.H. Kim and S. Kumar, Environ. Res., 173, 411 (2019); https://doi.org/10.1016/j.envres.2019.03.061
N. Ayawei, A.N. Ebelegi and D. Wankasi, J. Chem., 2017, 3039817 (2017); https://doi.org/10.1155/2017/3039817
H. Gao, Y. Liu, G. Zeng, W. Xu, T. Li and W. Xia, J. Hazard. Mater., 150, 446 (2008); https://doi.org/10.1016/j.jhazmat.2007.04.126
M. Jain, V.K. Garg and K. Kadirvelu, J. Hazard. Mater., 162, 365 (2009); https://doi.org/10.1016/j.jhazmat.2008.05.048
A.G.D. Prasad and M.A. Abdullah, BioResources, 5, 838 (2010).
E. Mekonnen, M. Yitbarek and T.R. Soreta, S. Afr. J. Chem., 68, 45 (2015); https://doi.org/10.17159/0379-4350/2015/v68a7
S.S. Sonawane, S.S. Chhajed, S.S. Attar and S.J. Kshirsagar, J. Anal. Sci. Technol., 10, 1 (2019); https://doi.org/10.1186/s40543-018-0160-2