Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization, in silico and in vitro Evaluations of Symmetrical 1,3-Diketones
Corresponding Author(s) : S.E. Noorjahan
Asian Journal of Chemistry,
Vol. 32 No. 4 (2020): Vol 32 Issue 4, 2020
Abstract
1,3-Dicarbonyl compounds have gained significant importance since they are abundantly available in the natural products and possess myriad biological activities. The new symmetrical 1,3-diketones bearing L-proline, 2-methyl-5-iodobenzoic acid, piperidine-3-carboxylic acid and naphthalene-1-acetic acid moieties were synthesized by coupling reaction of appropriate ketone with N-acyl triazole in the presence of MgBr2·Et2O and DIPEA. The chemical structure of the compounds were confirmed from the spectral data such as 1H, 13C NMR, FT-IR and HRMS. Molecular docking studies were carried out for all the compounds with tumor associated protein tyrosine kinase-6 (PTK6) and inflammatory protein cyclooxygenase-2 (COX2). The in vitro evaluation was carried out using breast cancer cell lines (MTT assay) and HRBC stabilization assays. During in silico studies, the ki values obtained against PTK6 and COX2 for (5a-d) compounds were in the range (-7.5 to -10.6) and (-7.6 to -9.8) kcal/mol, respectively. The compound 5d was selected for MTT assay, since it exhibited the highest binding affinity (-10.6 kcal/mol) against PTK6 and gave IC50 - 2.4 μg/mL against breast cancer cell lines. The HRBC stabilization of all the compounds (5a-5d) were in the range (59.28-93.4) %, with highest stabilization value by 5d, which also displayed higher binding affinity with -7.6 kcal/mol towards COX2. Thus, the synthesized symmetrical 1,3-diketones with suitable functionality can be both anticancer and anti-inflammatory agents.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Urbaniak, K. Jurek, K. Witt, A. Goraczko, B. Staniszewski and A. Mickiewicz, Chemik, 65, 273 (2011).
- G. Aromí, P. Gamez and J. Reedijk, Coord. Chem. Rev., 252, 964 (2008); https://doi.org/10.1016/j.ccr.2007.07.008
- O. Khudina, Y.V. Burgart, N. Murashova and V. Saloutin, Russ. J. Org. Chem., 39, 1421 (2003); https://doi.org/10.1023/B:RUJO.0000010558.54765.1a
- D. Bonne, Y. Coquerel, T. Constantieux and J. Rodriguez, Tetrahedron Asymm., 21, 1085 (2010); https://doi.org/10.1016/j.tetasy.2010.04.045
- E.A. Shokova, J. Kim and V. Kovalev, Russ. J. Org. Chem., 51, 755 (2015); https://doi.org/10.1134/S1070428015060019
- H.S.P. Rao and N. Muthanna, Eur. J. Org. Chem., 2015, 1525 (2015); https://doi.org/10.1002/ejoc.201403402
- A.R. Katritzky and A. Pastor, J. Org. Chem., 65, 3679 (2000); https://doi.org/10.1021/jo991878f
- A. Padwa, S.F. Hornbuckle, Z. Zhang and L. Zhi, J. Org. Chem., 55, 5297 (1990); https://doi.org/10.1021/jo00305a029
- H.S. Baek, B.W. Yoo, S.R. Keum, C.M. Yoon, S.H. Kim and J.H. Kim, Synth. Commun., 30, 31 (2000); https://doi.org/10.1080/00397910008087289
- P.C. Andrews, G.B. Deacon, R. Frank, B.H. Fraser, J.G. MacLellan, P.C. Junk, M. Massi, B. Moubaraki, K.S. Murray and M. Silberstein, Eur. J. Inorg. Chem., 2009, 744 (2009); https://doi.org/10.1002/ejic.200801006
- A. Kel’in, Curr. Org. Chem., 7, 1691 (2003); https://doi.org/10.2174/1385272033486233
- A. Kel’in and A. Maioli, Curr. Org. Chem., 7, 1855 (2003); https://doi.org/10.2174/1385272033486134
- D. Lim, F. Fang, G. Zhou and D.M. Coltart, Org. Lett., 9, 4139 (2007); https://doi.org/10.1021/ol701599v
- Y.-M. Sun, H.-Y. Zhang, D.-Z. Chen and C.-B. Liu, Org. Lett., 4, 2909 (2002); https://doi.org/10.1021/ol0262789
- S.V. Jovanovic, C.W. Boone, S. Steenken, M. Trinoga and R.B. Kaskey, J. Am. Chem. Soc., 123, 3064 (2001); https://doi.org/10.1021/ja003823x
- K. Nakano, T. Nakayachi, E. Yasumoto, S.R.M. Morshed, K. Hashimoto, H. Kikuchi, H. Nishikawa, K. Sugiyama, O. Amano and M. Kawase, Anticancer Res., 24, 711 (2004).
- L. Hu, Z. Li, Z. Wang, G. Liu, X. He, X. Wang and C. Zeng, Med. Chem., 11, 180 (2015); https://doi.org/10.2174/1573406410666140829154131
- A. Janecka, R. Staniszewska and J. Fichna, Curr. Med. Chem., 14, 3201 (2007); https://doi.org/10.2174/092986707782793880
- R. Staniszewska, J. Fichna, K. Gach, G. Toth, J. Poels, J. Vanden Broeck and A. Janecka, Chem. Biol. Drug Des., 72, 91 (2008); https://doi.org/10.1111/j.1747-0285.2008.00678.x
- C.-C. Lin, Y. Liu, C.-T. Ho and M.-T. Huang, Food Funct., 2, 78 (2011); https://doi.org/10.1039/C0FO00098A
- O. Trott and A.J. Olson, J. Comput. Chem., 31, 455 (2010); https://doi.org/10.1002/jcc.21334
- P. Thangarasu, A. Manikandan and S. Thamaraiselvi, Bioorg. Chem., 86, 410 (2019); https://doi.org/10.1016/j.bioorg.2019.02.003
- A. Chowdhury, S. Azam, M.A. Jainul, K.O. Faruq and A. Islam, Int. J. Microbiol., 2014, 410935 (2014); https://doi.org/10.1155/2014/410935
- J.T. Pulkkinen and J.J. Vepsäläinen, J. Org. Chem., 61, 8604 (1996); https://doi.org/10.1021/jo960887a.
References
W. Urbaniak, K. Jurek, K. Witt, A. Goraczko, B. Staniszewski and A. Mickiewicz, Chemik, 65, 273 (2011).
G. Aromí, P. Gamez and J. Reedijk, Coord. Chem. Rev., 252, 964 (2008); https://doi.org/10.1016/j.ccr.2007.07.008
O. Khudina, Y.V. Burgart, N. Murashova and V. Saloutin, Russ. J. Org. Chem., 39, 1421 (2003); https://doi.org/10.1023/B:RUJO.0000010558.54765.1a
D. Bonne, Y. Coquerel, T. Constantieux and J. Rodriguez, Tetrahedron Asymm., 21, 1085 (2010); https://doi.org/10.1016/j.tetasy.2010.04.045
E.A. Shokova, J. Kim and V. Kovalev, Russ. J. Org. Chem., 51, 755 (2015); https://doi.org/10.1134/S1070428015060019
H.S.P. Rao and N. Muthanna, Eur. J. Org. Chem., 2015, 1525 (2015); https://doi.org/10.1002/ejoc.201403402
A.R. Katritzky and A. Pastor, J. Org. Chem., 65, 3679 (2000); https://doi.org/10.1021/jo991878f
A. Padwa, S.F. Hornbuckle, Z. Zhang and L. Zhi, J. Org. Chem., 55, 5297 (1990); https://doi.org/10.1021/jo00305a029
H.S. Baek, B.W. Yoo, S.R. Keum, C.M. Yoon, S.H. Kim and J.H. Kim, Synth. Commun., 30, 31 (2000); https://doi.org/10.1080/00397910008087289
P.C. Andrews, G.B. Deacon, R. Frank, B.H. Fraser, J.G. MacLellan, P.C. Junk, M. Massi, B. Moubaraki, K.S. Murray and M. Silberstein, Eur. J. Inorg. Chem., 2009, 744 (2009); https://doi.org/10.1002/ejic.200801006
A. Kel’in, Curr. Org. Chem., 7, 1691 (2003); https://doi.org/10.2174/1385272033486233
A. Kel’in and A. Maioli, Curr. Org. Chem., 7, 1855 (2003); https://doi.org/10.2174/1385272033486134
D. Lim, F. Fang, G. Zhou and D.M. Coltart, Org. Lett., 9, 4139 (2007); https://doi.org/10.1021/ol701599v
Y.-M. Sun, H.-Y. Zhang, D.-Z. Chen and C.-B. Liu, Org. Lett., 4, 2909 (2002); https://doi.org/10.1021/ol0262789
S.V. Jovanovic, C.W. Boone, S. Steenken, M. Trinoga and R.B. Kaskey, J. Am. Chem. Soc., 123, 3064 (2001); https://doi.org/10.1021/ja003823x
K. Nakano, T. Nakayachi, E. Yasumoto, S.R.M. Morshed, K. Hashimoto, H. Kikuchi, H. Nishikawa, K. Sugiyama, O. Amano and M. Kawase, Anticancer Res., 24, 711 (2004).
L. Hu, Z. Li, Z. Wang, G. Liu, X. He, X. Wang and C. Zeng, Med. Chem., 11, 180 (2015); https://doi.org/10.2174/1573406410666140829154131
A. Janecka, R. Staniszewska and J. Fichna, Curr. Med. Chem., 14, 3201 (2007); https://doi.org/10.2174/092986707782793880
R. Staniszewska, J. Fichna, K. Gach, G. Toth, J. Poels, J. Vanden Broeck and A. Janecka, Chem. Biol. Drug Des., 72, 91 (2008); https://doi.org/10.1111/j.1747-0285.2008.00678.x
C.-C. Lin, Y. Liu, C.-T. Ho and M.-T. Huang, Food Funct., 2, 78 (2011); https://doi.org/10.1039/C0FO00098A
O. Trott and A.J. Olson, J. Comput. Chem., 31, 455 (2010); https://doi.org/10.1002/jcc.21334
P. Thangarasu, A. Manikandan and S. Thamaraiselvi, Bioorg. Chem., 86, 410 (2019); https://doi.org/10.1016/j.bioorg.2019.02.003
A. Chowdhury, S. Azam, M.A. Jainul, K.O. Faruq and A. Islam, Int. J. Microbiol., 2014, 410935 (2014); https://doi.org/10.1155/2014/410935
J.T. Pulkkinen and J.J. Vepsäläinen, J. Org. Chem., 61, 8604 (1996); https://doi.org/10.1021/jo960887a.