Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Electrochemical Production of Hydrogen in Fermented Flour by Stainless Steel Electrode
Corresponding Author(s) : Isana Supiah Yosephine Louise
Asian Journal of Chemistry,
Vol. 32 No. 4 (2020): Vol 32 Issue 4, 2020
Abstract
Hydrogen gas production with an electrochemical method requires more energy. This research aimed to determine the efficiency of the electrolysis process in product and energy consumptions using stainless steel as a working electrode and various concentration of the fermented flour as the media. The fermented flour was prepared by fermentation of Manihot utilissima with Monascus sp. and characterized by infrared spectroscopy. The stainless steel was characterized by voltammetry, SEM-EDX, XRD and gas sorption analyzer. The results showed that stainless steel activity was decreased in the fermented flour because the surface of stainless steel was being covered. Moreover, addition of 0-2 g/L water fermented flour had relatively similar stainless steel activity. The cathodic current peaks were at -4.86 × 10-4 and -4.87 × 10-4 mA, respectively, for 0 and 2 g/L media. The processes had consumed the same energy with -0.0996 V of cathodic peak potential.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.S. Kumar and V. Himabindu, Mater. Sci. Energy Technol., 2, 442 (2019); https://doi.org/10.1016/j.mset.2019.03.002
- D.M.F. Santos, C.A.C. Sequeira and J.L. Figueiredo, Quim. Nova, 36, 1176 (2013); https://doi.org/10.1590/S0100-40422013000800017
- C.M. Kalamaras and A.M. Efstathiou, 2013, 690627 (2013); https://doi.org/10.1155/2013/690627
- I. Vincent, A. Kruger and D. Bessarabov, Int. J. Electrochem. Sci., 13 11347 (2018); https://doi.org/10.20964/2018.12.84
- K. Zeng and D. Zhang, Progr. Ener. Comb. Sci., 36, 307 (2010); https://doi.org/10.1016/j.pecs.2009.11.002
- C. Li, K.J. Aoki, J. Chen and T. Nishiumi, Rep. Electrochem., 3, 7 (2013); https://doi.org/10.2147/RIE.S47741
- L. Soler, J. Macanas, M. Munoz and J. Casado, Int. J. Hydrogen Energy, 31, 129 (2006); https://doi.org/10.1016/j.ijhydene.2004.11.001
- P.-H. Floch, S. Gabriel, C. Mansilla and F. Werkoff, Int. J. Hydrogen Energy, 32, 4641 (2007); https://doi.org/10.1016/j.ijhydene.2007.07.033
- A. Ursúa, L. Marroyo, E. Gubía, L.M. Gandía, P.M. Diéguez and P. Sanchis, Int. J. Hydrogen Ener., 34, 3221 (2009); https://doi.org/10.1016/j.ijhydene.2009.02.017
- A.L. Yuvaraj and D. Santhanaraj, Mater. Res., 17, 83 (2014); https://doi.org/10.1590/S1516-14392013005000153
- L. Zeng, T.S. Zhao, R.H. Zhang and J.B. Xu, Electrochem. Commun., 87, 66 (2018); https://doi.org/10.1016/j.elecom.2018.01.002
- M.J. Lavorante, C.Y. Reynoso and J.I. Franco, Int. J. Electrochem., 2019, 5392452 (2019) https://doi.org/10.1155/2019/5392452
- S.Y.L. Isana, W. Trisunaryanti, A. Kuncaka and Triyono, IOSR J. Appl. Chem., 3, 6 (2012); https://doi.org/10.9790/5736-0310610
- C. Lupi, A. Dell'Era and M. Pasquali, Int. J. Hydrogen Ener., 34, 2101 (2009); https://doi.org/10.1016/j.ijhydene.2009.01.015
- S.Y.L. Isana, Siti Marwati, Sulistyani, and Heru Pratomo, Produksi Gas Hidrogen dalam Tepung Umbi Uwi (Dioscorea opposita) (Hydrogen gas production in Dioscorea opposite flour), Research Report, LPPM UNY (2017) (In Indonesian).
- S.Y.L. Isana, Variasi temperatur dan waktu pada elektrolisis larutan garam dapur berbagai merk (Variation of temperature and time on a variety brand of salt aqeous solution), Seminar Nasional Kimia, Jurusan Pendidikan Kimia FMIPA UNY (2009) (In Indonesian).
- F.M. Sapountzi, J.M. Gracia, C.J. (Kees-Jan) Weststrate, H. O.A. Fredriksson and J.W. (Hans)Niemantsverdriet, Progr. Ener. Comb. Sci., 58, 1 (2017); https://doi.org/10.1016/j.pecs.2016.09.001
- A.N. Colli, H.H. Girault and A. Battistel, Materials, 12, 1336 (2019) https://doi.org/10.3390/ma12081336
- W. Tong, M. Forster, F. Dionigi, S. Dresp, R.S. Erami, P. Strasser, A.J. Cowan and P. Farràs, Nat. Energy (2020) (In press). https://doi.org/10.1038/s41560-020-0550-8
- T. Maeda, Y. Nagata, N. Endo and M. Ishida, J. Int. Coun. Electr. Eng., 6, 78 (2016); https://doi.org/10.1080/22348972.2016.1173783
- O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson and S. Few, Int. J. Hydrogen Energy, 42, 30470 (2017); https://doi.org/10.1016/j.ijhydene.2017.10.045
- K. Mazloomi, N.B. Sulaiman and H. Moayedi, Int. J. Electrochem. Sci., 7, 3314 (2012).
- Z. Yan, J.L. Hitt, J.A. Turner and T.E. Mallouk, PNAS (2019); https://doi.org/10.1073/pnas.1821686116
References
S.S. Kumar and V. Himabindu, Mater. Sci. Energy Technol., 2, 442 (2019); https://doi.org/10.1016/j.mset.2019.03.002
D.M.F. Santos, C.A.C. Sequeira and J.L. Figueiredo, Quim. Nova, 36, 1176 (2013); https://doi.org/10.1590/S0100-40422013000800017
C.M. Kalamaras and A.M. Efstathiou, 2013, 690627 (2013); https://doi.org/10.1155/2013/690627
I. Vincent, A. Kruger and D. Bessarabov, Int. J. Electrochem. Sci., 13 11347 (2018); https://doi.org/10.20964/2018.12.84
K. Zeng and D. Zhang, Progr. Ener. Comb. Sci., 36, 307 (2010); https://doi.org/10.1016/j.pecs.2009.11.002
C. Li, K.J. Aoki, J. Chen and T. Nishiumi, Rep. Electrochem., 3, 7 (2013); https://doi.org/10.2147/RIE.S47741
L. Soler, J. Macanas, M. Munoz and J. Casado, Int. J. Hydrogen Energy, 31, 129 (2006); https://doi.org/10.1016/j.ijhydene.2004.11.001
P.-H. Floch, S. Gabriel, C. Mansilla and F. Werkoff, Int. J. Hydrogen Energy, 32, 4641 (2007); https://doi.org/10.1016/j.ijhydene.2007.07.033
A. Ursúa, L. Marroyo, E. Gubía, L.M. Gandía, P.M. Diéguez and P. Sanchis, Int. J. Hydrogen Ener., 34, 3221 (2009); https://doi.org/10.1016/j.ijhydene.2009.02.017
A.L. Yuvaraj and D. Santhanaraj, Mater. Res., 17, 83 (2014); https://doi.org/10.1590/S1516-14392013005000153
L. Zeng, T.S. Zhao, R.H. Zhang and J.B. Xu, Electrochem. Commun., 87, 66 (2018); https://doi.org/10.1016/j.elecom.2018.01.002
M.J. Lavorante, C.Y. Reynoso and J.I. Franco, Int. J. Electrochem., 2019, 5392452 (2019) https://doi.org/10.1155/2019/5392452
S.Y.L. Isana, W. Trisunaryanti, A. Kuncaka and Triyono, IOSR J. Appl. Chem., 3, 6 (2012); https://doi.org/10.9790/5736-0310610
C. Lupi, A. Dell'Era and M. Pasquali, Int. J. Hydrogen Ener., 34, 2101 (2009); https://doi.org/10.1016/j.ijhydene.2009.01.015
S.Y.L. Isana, Siti Marwati, Sulistyani, and Heru Pratomo, Produksi Gas Hidrogen dalam Tepung Umbi Uwi (Dioscorea opposita) (Hydrogen gas production in Dioscorea opposite flour), Research Report, LPPM UNY (2017) (In Indonesian).
S.Y.L. Isana, Variasi temperatur dan waktu pada elektrolisis larutan garam dapur berbagai merk (Variation of temperature and time on a variety brand of salt aqeous solution), Seminar Nasional Kimia, Jurusan Pendidikan Kimia FMIPA UNY (2009) (In Indonesian).
F.M. Sapountzi, J.M. Gracia, C.J. (Kees-Jan) Weststrate, H. O.A. Fredriksson and J.W. (Hans)Niemantsverdriet, Progr. Ener. Comb. Sci., 58, 1 (2017); https://doi.org/10.1016/j.pecs.2016.09.001
A.N. Colli, H.H. Girault and A. Battistel, Materials, 12, 1336 (2019) https://doi.org/10.3390/ma12081336
W. Tong, M. Forster, F. Dionigi, S. Dresp, R.S. Erami, P. Strasser, A.J. Cowan and P. Farràs, Nat. Energy (2020) (In press). https://doi.org/10.1038/s41560-020-0550-8
T. Maeda, Y. Nagata, N. Endo and M. Ishida, J. Int. Coun. Electr. Eng., 6, 78 (2016); https://doi.org/10.1080/22348972.2016.1173783
O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson and S. Few, Int. J. Hydrogen Energy, 42, 30470 (2017); https://doi.org/10.1016/j.ijhydene.2017.10.045
K. Mazloomi, N.B. Sulaiman and H. Moayedi, Int. J. Electrochem. Sci., 7, 3314 (2012).
Z. Yan, J.L. Hitt, J.A. Turner and T.E. Mallouk, PNAS (2019); https://doi.org/10.1073/pnas.1821686116