Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Biosorptive Removal of Cu(II), Cd(II) and Pb(II) Ions from Synthetic Wastewater Using Low Cost Biosorbent (Pyras pashia): Thermodynamic and Equilibrium Studies
Corresponding Author(s) : Harish Sharma
Asian Journal of Chemistry,
Vol. 32 No. 4 (2020): Vol 32 Issue 4, 2020
Abstract
In present study, Pyras pashia leaves were used as low cost biosorbent to study biosorption of Cu(II), Pb(II) and Cd(II) ions from contaminated wastewater. In the employed batch methods pH, contact time, metal ion concentration, temperature, biosorbent doses were taken as study parameters. The pH was varied from pH 1-9 to study the influence of pH on biosorption of metal ions by Pyras pashia. The optimum pH for the removal of Cu(II), Pb(II) and Cd(II) is observed at pH 5. The biosorption equilibrium time was varied between 15-75 min. Langmuir, Freundlich and Temkin isotherms were employed to study the biosorption. The biosorption parameter fits well with Langmuir isotherm. The biosorption of metal ions was increased with increasing biosorbent dose and contact time while increase in pH, metal ion concentration and temperature decrease the biosorption. Thermodynamic data suggest that the bisorption process was spontaneous, feasible and endothermic.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.E. Gall, R.S. Boyd and N. Rajakaruna, Environ. Monit. Assess., 187, 201 (2015); https://doi.org/10.1007/s10661-015-4436-3
- P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla and D.J. Sutton, EXS, 101, 133 (2012); https://doi.org/10.1007/978-3-7643-8340-4_6
- W. Yuan, N. Yang and X. Li, Biomed. Res. Int., 2016, 7825432 (2016); https://doi.org/10.1155/2016/7825432
- S.E. Orr and C.C. Bridges, Int. J. Mol. Sci., 18, 1039 (2017); https://doi.org/10.3390/ijms18051039
- V. Vella, R. Malaguarnera, R. Lappano, M. Maggiolini and A. Belfiore, Mol. Cell Endocrinol., 457, 57 (2017); https://doi.org/10.1016/j.mce.2016.10.020
- J. Rodríguez and P.M. Mandalunis, J. Toxicol., 2018, 4854152 (2018); https://doi.org/10.1155/2018/4854152
- M.A. Barakat, Arab. J. Chem., 4, 361 (2011); https://doi.org/10.1016/j.arabjc.2010.07.019
- Renu, M. Agarwal and K. Singh, Interdiscipl. Environ. Rev., 18, 124 (2017); https://doi.org/10.1504/IER.2017.10008828
- A. Azimi, A. Azari, M. Rezakazemi and M. Ansarpour, ChemBioEng, 4, 37 (2017); https://doi.org/10.1002/cben.201600010
- M.S. Abdel-Raouf and A.R.M. Abdul-Raheim, J. Pollut. Effects Cont., 5, 180 (2017); https://doi.org/10.4172/2375-4397.1000180
- S.K. Srivastava, R. Tyagi, N. Pant and N. Pal, Environ. Technol. Lett., 10, 275 (1989); https://doi.org/10.1080/09593338909384742
- F.J. Ligate and J.E.G. Mdoe, Tanz. J. Sci., 41, 90 (2015).
- Z. Aksu and E. Balibek, J. Hazard. Mater., 145, 210 (2007); https://doi.org/10.1016/j.jhazmat.2006.11.011
- N.S. Bhandari, N. Joshi and S. Kumar, Environ. Sci. Indian J., 6, 145 (2011).
- N.S. Bhandari, N. Joshi, G.C. Shah and S. Kumar, J. Indian Chem. Soc., 89, 383 (2012).
- O.S. Amuda, A.A. Giwa and I.S. Bello, Biochem. Eng. J., 36, 174 (2007); https://doi.org/10.1016/j.bej.2007.02.013.
- S.A. Odoemelam, C.U. Iroh and J.C. Igwe, Res. J. Appl. Sci., 6, 44 (2011).
- P. Sharma, P. Kumari, M.M. Srivastava and S. Srivastava, Bioresour. Technol., 98, 474 (2007); https://doi.org/10.1016/j.biortech.2005.12.016
- G. Yan and T. Viraraghavan, Bioresour. Technol., 78, 243 (2001); https://doi.org/10.1016/S0960-8524(01)00020-7.
- V. Venugopal and K. Mohanty, Chem. Eng. J., 174, 151 (2011); https://doi.org/10.1016/j.cej.2011.08.068
- D.M. Veneu, M.L. Torem and G.A.H. Pino, Miner. Eng., 48, 44 (2013); https://doi.org/10.1016/j.mineng.2012.11.015
- B. Das and N.K. Mondal, Univ. J. Environ. Res. Technol., 1, 515 (2011).
- N. Azouaou, Z. Sadaou, A. Djaafri and H. Mokaddem, J. Hazard. Mater., 184, 126 (2010); https://doi.org/10.1016/j.jhazmat.2010.08.014
- P. Tiwari, M.C. Vishwakarma, S.K. Joshi, H. Sharma, N.S. Bhandari, Modern Chem., 5 11 (2017); https://doi.org/10.11648/j.mc.20170501.13
- A. Mittal, J. Mittal, A. Malviya, D. Kaur and V.K. Gupta, J. Colloid Interface Sci., 343, 463 (2010); https://doi.org/10.1016/j.jcis.2009.11.060
- I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918); https://doi.org/10.1021/ja02242a004.
- A.M. Awwad and N.M. Salem, J. Saudi Chem. Soc., 18, 486 (2014); https://doi.org/10.1016/j.jscs.2011.10.007.
- H. Freundlich, Z. Phys. Chem., 57U, 385 (1907); https://doi.org/10.1515/zpch-1907-5723
- M.J. Temkin and V. Pyzhev, Acta Physiochim. URSS, 12, 327 (1935).
- P.C. Mishra and R.K. Patel, J. Hazard. Mater., 168, 319 (2009); https://doi.org/10.1016/j.jhazmat.2009.02.026
- M.A.O. Badmus, T.O.K. Audu and B.U. Anyata, Turkish J. Eng. Environ. Sci., 31, 251 (2007).
- M.I. Martin, F.A. Lopez, C. Perez, A. Lopez-Delgado and F.J. Alguacil, J. Chem. Technol. Biotechnol., 80, 1223 (2005); https://doi.org/10.1002/jctb.1305
- S.S. Ahluwalia and D. Goyal, Eng. Life Sci., 5, 158 (2005); https://doi.org/10.1002/elsc.200420066
- A. Kapoor and T. Viraraghavan, Bioresour. Technol., 53, 195 (1995); https://doi.org/10.1016/0960-8524(95)00072-M
- M. Mukhopadhyay, S. Noronha and G. Suraishkumar, Bioresour. Technol., 98, 1781 (2007); https://doi.org/10.1016/j.biortech.2006.06.025
- M.C. Vishwakarma, P. Tiwari, S.K. Joshi, H. Sharma and N.S. Bhandari, Chem. Sci. Trans., 7, 445 (2018); https://doi.org/10.7598/cst2018.1490
- B. Mattuschka and G. Straube, J. Chem. Technol. Biotechnol., 58, 57 (1993); https://doi.org/10.1002/jctb.280580108
- E.S.Z. El-Ashtoukhy, N.K. Amin and O. Abdelwahab, Desalination, 223, 162 (2008); https://doi.org/10.1016/j.desal.2007.01.206
- A. Kapoor, T. Viraraghavan and D.R. Cullimore, Bioresour. Technol., 70, 95 (1999); https://doi.org/10.1016/S0960-8524(98)00192-8
- E. Pehlivan, B.H. Yanik, G. Ahmetli and M. Pehlivan, Bioresour. Technol., 99, 3520 (2008); https://doi.org/10.1016/j.biortech.2007.07.052
- M.J. Zamzow, B.R. Eichbaum, K.R. Sandgren and D.E. Shanks, Sep. Sci. Technol., 25, 1555 (1990); https://doi.org/10.1080/01496399008050409
- S.K. Srivastava, R. Tyagi, N. Pant and N. Pal, Environ. Technol. Lett., 9, 1173 (1988); https://doi.org/10.1080/09593338809384679
- R. Aravindhan, J.R. Rao and B.U. Nair, J. Hazard. Mater., 142, 68 (2007); https://doi.org/10.1016/j.jhazmat.2006.07.058
- Z. Aksu, Process Biochem., 38, 89 (2002); https://doi.org/10.1016/S0032-9592(02)00051-1
- O.S. Lawal, A.R. Sanni, I.A. Ajayi and O.O. Rabiu, J. Hazard. Mater., 177, 829 (2010); https://doi.org/10.1016/j.jhazmat.2009.12.108
References
J.E. Gall, R.S. Boyd and N. Rajakaruna, Environ. Monit. Assess., 187, 201 (2015); https://doi.org/10.1007/s10661-015-4436-3
P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla and D.J. Sutton, EXS, 101, 133 (2012); https://doi.org/10.1007/978-3-7643-8340-4_6
W. Yuan, N. Yang and X. Li, Biomed. Res. Int., 2016, 7825432 (2016); https://doi.org/10.1155/2016/7825432
S.E. Orr and C.C. Bridges, Int. J. Mol. Sci., 18, 1039 (2017); https://doi.org/10.3390/ijms18051039
V. Vella, R. Malaguarnera, R. Lappano, M. Maggiolini and A. Belfiore, Mol. Cell Endocrinol., 457, 57 (2017); https://doi.org/10.1016/j.mce.2016.10.020
J. Rodríguez and P.M. Mandalunis, J. Toxicol., 2018, 4854152 (2018); https://doi.org/10.1155/2018/4854152
M.A. Barakat, Arab. J. Chem., 4, 361 (2011); https://doi.org/10.1016/j.arabjc.2010.07.019
Renu, M. Agarwal and K. Singh, Interdiscipl. Environ. Rev., 18, 124 (2017); https://doi.org/10.1504/IER.2017.10008828
A. Azimi, A. Azari, M. Rezakazemi and M. Ansarpour, ChemBioEng, 4, 37 (2017); https://doi.org/10.1002/cben.201600010
M.S. Abdel-Raouf and A.R.M. Abdul-Raheim, J. Pollut. Effects Cont., 5, 180 (2017); https://doi.org/10.4172/2375-4397.1000180
S.K. Srivastava, R. Tyagi, N. Pant and N. Pal, Environ. Technol. Lett., 10, 275 (1989); https://doi.org/10.1080/09593338909384742
F.J. Ligate and J.E.G. Mdoe, Tanz. J. Sci., 41, 90 (2015).
Z. Aksu and E. Balibek, J. Hazard. Mater., 145, 210 (2007); https://doi.org/10.1016/j.jhazmat.2006.11.011
N.S. Bhandari, N. Joshi and S. Kumar, Environ. Sci. Indian J., 6, 145 (2011).
N.S. Bhandari, N. Joshi, G.C. Shah and S. Kumar, J. Indian Chem. Soc., 89, 383 (2012).
O.S. Amuda, A.A. Giwa and I.S. Bello, Biochem. Eng. J., 36, 174 (2007); https://doi.org/10.1016/j.bej.2007.02.013.
S.A. Odoemelam, C.U. Iroh and J.C. Igwe, Res. J. Appl. Sci., 6, 44 (2011).
P. Sharma, P. Kumari, M.M. Srivastava and S. Srivastava, Bioresour. Technol., 98, 474 (2007); https://doi.org/10.1016/j.biortech.2005.12.016
G. Yan and T. Viraraghavan, Bioresour. Technol., 78, 243 (2001); https://doi.org/10.1016/S0960-8524(01)00020-7.
V. Venugopal and K. Mohanty, Chem. Eng. J., 174, 151 (2011); https://doi.org/10.1016/j.cej.2011.08.068
D.M. Veneu, M.L. Torem and G.A.H. Pino, Miner. Eng., 48, 44 (2013); https://doi.org/10.1016/j.mineng.2012.11.015
B. Das and N.K. Mondal, Univ. J. Environ. Res. Technol., 1, 515 (2011).
N. Azouaou, Z. Sadaou, A. Djaafri and H. Mokaddem, J. Hazard. Mater., 184, 126 (2010); https://doi.org/10.1016/j.jhazmat.2010.08.014
P. Tiwari, M.C. Vishwakarma, S.K. Joshi, H. Sharma, N.S. Bhandari, Modern Chem., 5 11 (2017); https://doi.org/10.11648/j.mc.20170501.13
A. Mittal, J. Mittal, A. Malviya, D. Kaur and V.K. Gupta, J. Colloid Interface Sci., 343, 463 (2010); https://doi.org/10.1016/j.jcis.2009.11.060
I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918); https://doi.org/10.1021/ja02242a004.
A.M. Awwad and N.M. Salem, J. Saudi Chem. Soc., 18, 486 (2014); https://doi.org/10.1016/j.jscs.2011.10.007.
H. Freundlich, Z. Phys. Chem., 57U, 385 (1907); https://doi.org/10.1515/zpch-1907-5723
M.J. Temkin and V. Pyzhev, Acta Physiochim. URSS, 12, 327 (1935).
P.C. Mishra and R.K. Patel, J. Hazard. Mater., 168, 319 (2009); https://doi.org/10.1016/j.jhazmat.2009.02.026
M.A.O. Badmus, T.O.K. Audu and B.U. Anyata, Turkish J. Eng. Environ. Sci., 31, 251 (2007).
M.I. Martin, F.A. Lopez, C. Perez, A. Lopez-Delgado and F.J. Alguacil, J. Chem. Technol. Biotechnol., 80, 1223 (2005); https://doi.org/10.1002/jctb.1305
S.S. Ahluwalia and D. Goyal, Eng. Life Sci., 5, 158 (2005); https://doi.org/10.1002/elsc.200420066
A. Kapoor and T. Viraraghavan, Bioresour. Technol., 53, 195 (1995); https://doi.org/10.1016/0960-8524(95)00072-M
M. Mukhopadhyay, S. Noronha and G. Suraishkumar, Bioresour. Technol., 98, 1781 (2007); https://doi.org/10.1016/j.biortech.2006.06.025
M.C. Vishwakarma, P. Tiwari, S.K. Joshi, H. Sharma and N.S. Bhandari, Chem. Sci. Trans., 7, 445 (2018); https://doi.org/10.7598/cst2018.1490
B. Mattuschka and G. Straube, J. Chem. Technol. Biotechnol., 58, 57 (1993); https://doi.org/10.1002/jctb.280580108
E.S.Z. El-Ashtoukhy, N.K. Amin and O. Abdelwahab, Desalination, 223, 162 (2008); https://doi.org/10.1016/j.desal.2007.01.206
A. Kapoor, T. Viraraghavan and D.R. Cullimore, Bioresour. Technol., 70, 95 (1999); https://doi.org/10.1016/S0960-8524(98)00192-8
E. Pehlivan, B.H. Yanik, G. Ahmetli and M. Pehlivan, Bioresour. Technol., 99, 3520 (2008); https://doi.org/10.1016/j.biortech.2007.07.052
M.J. Zamzow, B.R. Eichbaum, K.R. Sandgren and D.E. Shanks, Sep. Sci. Technol., 25, 1555 (1990); https://doi.org/10.1080/01496399008050409
S.K. Srivastava, R. Tyagi, N. Pant and N. Pal, Environ. Technol. Lett., 9, 1173 (1988); https://doi.org/10.1080/09593338809384679
R. Aravindhan, J.R. Rao and B.U. Nair, J. Hazard. Mater., 142, 68 (2007); https://doi.org/10.1016/j.jhazmat.2006.07.058
Z. Aksu, Process Biochem., 38, 89 (2002); https://doi.org/10.1016/S0032-9592(02)00051-1
O.S. Lawal, A.R. Sanni, I.A. Ajayi and O.O. Rabiu, J. Hazard. Mater., 177, 829 (2010); https://doi.org/10.1016/j.jhazmat.2009.12.108