Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Green Synthesis and Applications of Nano CeO2/rGO Solar Active Photocatalyst for the Degradation of Basic Auramine-O Dye
Corresponding Author(s) : P. Sivakumar
Asian Journal of Chemistry,
Vol. 32 No. 3 (2020): Vol 32 Issue 3
Abstract
In present study, the preparation of solar active photocatalyst and its application for the detoxification and degradation of dye molecules in aqueous medium is demonstrated. The reduced graphene oxide (rGO) is prepared from graphene oxide (GO) using Carica papaya leaf extract. Nanosize CeO2 was coated over the rGO surface to make a nanocomposite photocatalyst. Prepared composite catalyst was characterized using SEM, HRTEM, XRD, EDX, FTIR, FT-Raman and UV-DRS techniques. The prepared composite catalyst was used for the degradation of auramine-O dye in its aqueous solution using UV and solar irradiations. The degradation kinetics is also evaluated using Langmuir-Hinshelwood kinetic model. The kinetic curves are analyzed using basic algorithm. A deviation from the experimental values and the reaction order is enumerated.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.L. Lewis, W. Garrison, K.E. Wommack, A. Whittemore, P. Steudler and J. Melillo, Nature, 401, 898 (1999); https://doi.org/10.1038/44801
- S.S. Epstein, S. Joshi, J. Andrea, N. Mantel, E. Sawicki, T. Stanley and E.C. Tabor, Nature, 212, 1305 (1966); https://doi.org/10.1038/2121305a0
- P.N. Palanisamy and P. Sivakumar, Desalination, 249, 388 (2009); https://doi.org/10.1016/j.desal.2009.09.006
- K.C. Bedin, A.C. Martins, A.L. Cazetta, O. Pezoti and V.C. Almeida, Chem. Eng. J., 286, 476 (2016); https://doi.org/10.1016/j.cej.2015.10.099
- A.K. Verma, R.R. Dash and P. Bhunia, J. Environ. Manage., 93, 154 (2012); https://doi.org/10.1016/j.jenvman.2011.09.012
- E. Alventosa-deLara, S. Barredo-Damas, M.I. Alcaina-Miranda and M.I. Iborra-Clar, J. Hazard. Mater., 209, 492 (2012); https://doi.org/10.1016/j.jhazmat.2012.01.065
- M. Riera-Torres, C. Gutiérrez-Bouzán and M. Crespi, Desalination, 252, 53 (2010); https://doi.org/10.1016/j.desal.2009.11.002
- N. Azbar, T. Yonar and K. Kestioglu, Chemosphere, 55, 35 (2004); https://doi.org/10.1016/j.chemosphere.2003.10.046
- P. Kaushik and A. Malik, J. Hazard. Mater., 185, 837 (2011); https://doi.org/10.1016/j.jhazmat.2010.09.096
- A. Sivakumar, B. Murugesan, A. Loganathan and P. Sivakumar, J. Taiwan Inst. Chem. Eng., 45, 2300 (2014); https://doi.org/10.1016/j.jtice.2014.07.003
- T. Bechtold, E. Burtscher and A. Turcanu, J. Chem. Technol. Biotechnol., 76, 303 (2001); https://doi.org/10.1002/jctb.383
- C.H. Kwon, H. Shin, J.H. Kim, W.S. Choi and K.H. Yoon, Mater. Chem. Phys., 86, 78 (2004); https://doi.org/10.1016/j.matchemphys.2004.02.024
- M. Quintana, E. Ricra, J. Rodríguez and W. Estrada, Catal. Today, 76, 141 (2002); https://doi.org/10.1016/S0920-5861(02)00214-6
- J.S. Hu, L.L. Ren, Y.G. Guo, H.P. Liang, A.M. Cao, L.J. Wan and C.L. Bai, Angew. Chem. Int. Ed. Engl., 44, 1269 (2005); https://doi.org/10.1002/anie.200462057
- H. Wang, F. Sun, Y. Zhang, L. Li, H. Chen, Q. Wu and J.C. Yu, J. Mater. Chem., 20, 5641 (2010); https://doi.org/10.1039/b926930d
- S.H. Baeck, K.S. Choi, T.F. Jaramillo, G.D. Stucky and E.W. McFarland, Adv. Mater., 15, 1269 (2003); https://doi.org/10.1002/adma.200304669
- C. Wang, C. Shao, X. Zhang and Y. Liu, Inorg. Chem., 48, 7261 (2009); https://doi.org/10.1021/ic9005983
- W.W. Wang, Y.J. Zhu and L.X. Yang, Adv. Funct. Mater., 17, 59 (2007); https://doi.org/10.1002/adfm.200600431
- X. Wang, X. Lu, B. Liu, D. Chen, Y. Tong and G. Shen, Adv. Mater., 26, 4763 (2014); https://doi.org/10.1002/adma.201400910
- L. Sun, X. Wang, K. Zhang, J. Zou and Q. Zhang, Nano Energy, 22, 11 (2016); https://doi.org/10.1016/j.nanoen.2015.12.007
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov, Science, 306, 666 (2004); https://doi.org/10.1126/science.1102896
- M. Srivastava, J. Singh, T. Kuila, R.K. Layek, N.H. Kim and J.H. Lee, Nanoscale, 7, 4820 (2015); https://doi.org/10.1039/C4NR07068B
- J. Zhu, D. Yang, Z. Yin, Q. Yan and H. Zhang, Small, 10, 3480 (2014); https://doi.org/10.1002/smll.201303202
- K.S. Novoselov, V.I. Fal2ko, L. Colombo, P.R. Gellert, M.G. Schwab and K. Kim, Nature, 490, 192 (2012); https://doi.org/10.1038/nature11458
- F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff and V. Pellegrini, Science, 347, 1246501 (2015); https://doi.org/10.1126/science.1246501
- T.H. Han, Y. Lee, M.R. Choi, S.H. Woo, S.H. Bae, B.H. Hong, J.H.Ahn and T.W. Lee, Nat. Photonics, 6, 105 (2012); https://doi.org/10.1038/nphoton.2011.318
- M. Pumera, Chem. Rec., 9, 211 (2009); https://doi.org/10.1002/tcr.200900008
- X. Sun, Z. Liu, K. Welsher, J.T. Robinson, A. Goodwin, S. Zaric and H. Dai, Nano Res., 1, 203 (2008); https://doi.org/10.1007/s12274-008-8021-8
- R. Raccichini, A. Varzi, S. Passerini and B. Scrosati, Nat. Mater., 14, 271 (2015); https://doi.org/10.1038/nmat4170
- Z.S. Wu, G. Zhou, L.C. Yin, W. Ren, F. Li and H.M. Cheng, Nano Energy, 1, 107 (2012); https://doi.org/10.1016/j.nanoen.2011.11.001
- S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y.I. Song, Y.-J. Kim, K.S. Kim, B. Özyilmaz, J.-H. Ahn, B.H. Hong and S. Iijima, Nat. Nanotechnol., 5, 574 (2010); https://doi.org/10.1038/nnano.2010.132
- M.D. Stoller, S. Park, Y. Zhu, J. An and R.S. Ruoff, Nano Lett., 8, 3498 (2008); https://doi.org/10.1021/nl802558y
- R.S. Edwards and K.S. Coleman, Nanoscale, 5, 38 (2013); https://doi.org/10.1039/C2NR32629A
- Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts and R.S. Ruoff, Adv. Mater., 22, 3906 (2010); https://doi.org/10.1002/adma.201001068
- H.P. Boehm, Angew. Chem. Int. Ed., 49, 9332 (2010); https://doi.org/10.1002/anie.201004096
- C. Soldano, A. Mahmood and E. Dujardin, Carbon, 48, 2127 (2010); https://doi.org/10.1016/j.carbon.2010.01.058
- V. Skákalová, V. Vretenár, L. Kopera, P. Kotrusz, C. Mangler, M. Mesko, J.C. Meyer and M. Hulman, Carbon, 72, 224 (2014); https://doi.org/10.1016/j.carbon.2014.02.006
- H. Liu, W.R. Cao, Y. Su, Z. Chen and Y. Wang, J. Colloid Interface Sci., 398, 161 (2013); https://doi.org/10.1016/j.jcis.2013.02.007
- B. Murugesan, A. Sivakumar, A. Loganathan and P. Sivakumar, J. Taiwan Inst. Chem. Eng., 71, 364 (2017); https://doi.org/10.1016/j.jtice.2016.11.020
- Y. Xu, H. Bai, G. Lu, C. Li and G. Shi, J. Am. Chem. Soc., 130, 5856 (2008); https://doi.org/10.1021/ja800745y
- A. Wang, S. Shen, Y. Zhao and W. Wu, J. Colloid Interface Sci., 445, 330 (2015); https://doi.org/10.1016/j.jcis.2015.01.017
- R. Zamiri, H.A. Ahangar, A. Kaushal, A. Zakaria, G. Zamiri, D. Tobaldi and J.M.F. Ferreira, PLoS One, 10, 0131851 (2015); https://doi.org/10.1371/journal.pone.0122989
- Y.K. Kho, W.Y. Teoh, A. Iwase, L. Madler, A. Kudo and R. Amal, ACS Appl. Mater. Interfaces, 3, 1997 (2011); https://doi.org/10.1021/am200247y
- S.I. El-Hout, S.M. El-Sheikh, H.M.A. Hassan, F.A. Harraz, I.A. Ibrahim and E.A. El-Sharkawy, Appl. Catal. A Gen., 503, 176 (2015); https://doi.org/10.1016/j.apcata.2015.06.036
- B. Lobato, V. Vretenár, P. Kotrusz, M. Hulman and T.A. Centeno, J. Colloid Interface Sci., 446, 203 (2015); https://doi.org/10.1016/j.jcis.2015.01.037
- R. Jain, A.S. Poyraz, D.P. Gamliel, J. Valla, S.L. Suib and R. Maric, Appl. Catal. A Gen., 507, 1 (2015); https://doi.org/10.1016/j.apcata.2015.09.041
- Y. Guo, X. Sun, Y. Liu, W. Wang, H. Qiu and J. Gao, Carbon, 50, 2513 (2012); https://doi.org/10.1016/j.carbon.2012.01.074
- G. Jnawali, Y. Rao, J.H. Beck, N. Petrone, I. Kymissis, J. Hone and T.F. Heinz, ACS Nano, 9, 7175 (2015); https://doi.org/10.1021/acsnano.5b01896
- J. Hu, C. Zou, Y. Su, M. Li, N. Hu, H. Ni, Z. Yang and Y. Zhang, J. Mater. Chem. C Mater. Opt. Electron. Devices, 5, 6862 (2017); https://doi.org/10.1039/C7TC01208J
- S. Kaneco, M.A. Rahman, T. Suzuki, H. Katsumata and K. Ohta, J. Photochem. Photobiol. Chem., 163, 419 (2004); https://doi.org/10.1016/j.jphotochem.2004.01.012
- J.J. Vilatela and D. Eder, ChemSusChem, 5, 456 (2012); https://doi.org/10.1002/cssc.201100536
- J. Shi, Chem. Rev., 113, 2139 (2013); https://doi.org/10.1021/cr3002752
- M.I. Litter, Appl. Catal. B, 23, 89 (1999); https://doi.org/10.1016/S0926-3373(99)00069-7
- S. Alahiane, S. Qourzal, M. El Ouardi, A. Abaamrane and A. Assabbane, Am. J. Anal. Chem., 5, 445 (2014); https://doi.org/10.4236/ajac.2014.58053
- D.F. Ollis, J. Phys. Chem. B, 109, 2439 (2005); https://doi.org/10.1021/jp040236f
- A.V. Emeline, V.K. Ryabchuk and N. Serpone, J. Phys. Chem. B, 109, 18515 (2005); https://doi.org/10.1021/jp0523367
- J. Matos, J. Laine and J.M. Herrmann, Appl. Catal. B, 18, 281 (1998); https://doi.org/10.1016/S0926-3373(98)00051-4
- N.G. Asenjo, R. Santamarý’a, C. Blanco, M. Granda, P. A’lvarez and R. Menendez, Carbon, 55, 62 (2013); https://doi.org/10.1016/j.carbon.2012.12.010
- A. Gomez-Barea, B. Leckner, A.L. Villanueva Perales and M. Campoy, Chem. Eng. J., 183, 408 (2012); https://doi.org/10.1016/j.cej.2011.12.053
- H. Fu, T. Xu, S. Zhu and Y. Zhu, Environ. Sci. Technol., 42, 8064 (2008); https://doi.org/10.1021/es801484x
- A. Sobczynski, L. Duczmal and W. Zmudzinski, J. Mol. Catal. Chem., 213, 225 (2004); https://doi.org/10.1016/j.molcata.2003.12.006
- E.C. Lima, M.A. Adebayo and F.M. Machado, Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications, Springer, p. 33-69 (2015).
- M.I. El-Khaiary and G.F. Malash, Hydrometallurgy, 105, 314 (2011); https://doi.org/10.1016/j.hydromet.2010.11.005
- J.I. Steinfeld, J.S. Francisco and W.L. Hase, Chemical Kinetics and Dynamics, Prentice Hall Publishing: New Jersey, edn 2 (1999).
- T. Ahmad, R. Phul, P. Alam, I.H. Lone, M. Shahazad, J. Ahmed, T. Ahamad and S.M. Alshehri, RSC Adv., 7, 27549 (2017); https://doi.org/10.1039/C6RA26888A
References
D.L. Lewis, W. Garrison, K.E. Wommack, A. Whittemore, P. Steudler and J. Melillo, Nature, 401, 898 (1999); https://doi.org/10.1038/44801
S.S. Epstein, S. Joshi, J. Andrea, N. Mantel, E. Sawicki, T. Stanley and E.C. Tabor, Nature, 212, 1305 (1966); https://doi.org/10.1038/2121305a0
P.N. Palanisamy and P. Sivakumar, Desalination, 249, 388 (2009); https://doi.org/10.1016/j.desal.2009.09.006
K.C. Bedin, A.C. Martins, A.L. Cazetta, O. Pezoti and V.C. Almeida, Chem. Eng. J., 286, 476 (2016); https://doi.org/10.1016/j.cej.2015.10.099
A.K. Verma, R.R. Dash and P. Bhunia, J. Environ. Manage., 93, 154 (2012); https://doi.org/10.1016/j.jenvman.2011.09.012
E. Alventosa-deLara, S. Barredo-Damas, M.I. Alcaina-Miranda and M.I. Iborra-Clar, J. Hazard. Mater., 209, 492 (2012); https://doi.org/10.1016/j.jhazmat.2012.01.065
M. Riera-Torres, C. Gutiérrez-Bouzán and M. Crespi, Desalination, 252, 53 (2010); https://doi.org/10.1016/j.desal.2009.11.002
N. Azbar, T. Yonar and K. Kestioglu, Chemosphere, 55, 35 (2004); https://doi.org/10.1016/j.chemosphere.2003.10.046
P. Kaushik and A. Malik, J. Hazard. Mater., 185, 837 (2011); https://doi.org/10.1016/j.jhazmat.2010.09.096
A. Sivakumar, B. Murugesan, A. Loganathan and P. Sivakumar, J. Taiwan Inst. Chem. Eng., 45, 2300 (2014); https://doi.org/10.1016/j.jtice.2014.07.003
T. Bechtold, E. Burtscher and A. Turcanu, J. Chem. Technol. Biotechnol., 76, 303 (2001); https://doi.org/10.1002/jctb.383
C.H. Kwon, H. Shin, J.H. Kim, W.S. Choi and K.H. Yoon, Mater. Chem. Phys., 86, 78 (2004); https://doi.org/10.1016/j.matchemphys.2004.02.024
M. Quintana, E. Ricra, J. Rodríguez and W. Estrada, Catal. Today, 76, 141 (2002); https://doi.org/10.1016/S0920-5861(02)00214-6
J.S. Hu, L.L. Ren, Y.G. Guo, H.P. Liang, A.M. Cao, L.J. Wan and C.L. Bai, Angew. Chem. Int. Ed. Engl., 44, 1269 (2005); https://doi.org/10.1002/anie.200462057
H. Wang, F. Sun, Y. Zhang, L. Li, H. Chen, Q. Wu and J.C. Yu, J. Mater. Chem., 20, 5641 (2010); https://doi.org/10.1039/b926930d
S.H. Baeck, K.S. Choi, T.F. Jaramillo, G.D. Stucky and E.W. McFarland, Adv. Mater., 15, 1269 (2003); https://doi.org/10.1002/adma.200304669
C. Wang, C. Shao, X. Zhang and Y. Liu, Inorg. Chem., 48, 7261 (2009); https://doi.org/10.1021/ic9005983
W.W. Wang, Y.J. Zhu and L.X. Yang, Adv. Funct. Mater., 17, 59 (2007); https://doi.org/10.1002/adfm.200600431
X. Wang, X. Lu, B. Liu, D. Chen, Y. Tong and G. Shen, Adv. Mater., 26, 4763 (2014); https://doi.org/10.1002/adma.201400910
L. Sun, X. Wang, K. Zhang, J. Zou and Q. Zhang, Nano Energy, 22, 11 (2016); https://doi.org/10.1016/j.nanoen.2015.12.007
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov, Science, 306, 666 (2004); https://doi.org/10.1126/science.1102896
M. Srivastava, J. Singh, T. Kuila, R.K. Layek, N.H. Kim and J.H. Lee, Nanoscale, 7, 4820 (2015); https://doi.org/10.1039/C4NR07068B
J. Zhu, D. Yang, Z. Yin, Q. Yan and H. Zhang, Small, 10, 3480 (2014); https://doi.org/10.1002/smll.201303202
K.S. Novoselov, V.I. Fal2ko, L. Colombo, P.R. Gellert, M.G. Schwab and K. Kim, Nature, 490, 192 (2012); https://doi.org/10.1038/nature11458
F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff and V. Pellegrini, Science, 347, 1246501 (2015); https://doi.org/10.1126/science.1246501
T.H. Han, Y. Lee, M.R. Choi, S.H. Woo, S.H. Bae, B.H. Hong, J.H.Ahn and T.W. Lee, Nat. Photonics, 6, 105 (2012); https://doi.org/10.1038/nphoton.2011.318
M. Pumera, Chem. Rec., 9, 211 (2009); https://doi.org/10.1002/tcr.200900008
X. Sun, Z. Liu, K. Welsher, J.T. Robinson, A. Goodwin, S. Zaric and H. Dai, Nano Res., 1, 203 (2008); https://doi.org/10.1007/s12274-008-8021-8
R. Raccichini, A. Varzi, S. Passerini and B. Scrosati, Nat. Mater., 14, 271 (2015); https://doi.org/10.1038/nmat4170
Z.S. Wu, G. Zhou, L.C. Yin, W. Ren, F. Li and H.M. Cheng, Nano Energy, 1, 107 (2012); https://doi.org/10.1016/j.nanoen.2011.11.001
S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y.I. Song, Y.-J. Kim, K.S. Kim, B. Özyilmaz, J.-H. Ahn, B.H. Hong and S. Iijima, Nat. Nanotechnol., 5, 574 (2010); https://doi.org/10.1038/nnano.2010.132
M.D. Stoller, S. Park, Y. Zhu, J. An and R.S. Ruoff, Nano Lett., 8, 3498 (2008); https://doi.org/10.1021/nl802558y
R.S. Edwards and K.S. Coleman, Nanoscale, 5, 38 (2013); https://doi.org/10.1039/C2NR32629A
Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts and R.S. Ruoff, Adv. Mater., 22, 3906 (2010); https://doi.org/10.1002/adma.201001068
H.P. Boehm, Angew. Chem. Int. Ed., 49, 9332 (2010); https://doi.org/10.1002/anie.201004096
C. Soldano, A. Mahmood and E. Dujardin, Carbon, 48, 2127 (2010); https://doi.org/10.1016/j.carbon.2010.01.058
V. Skákalová, V. Vretenár, L. Kopera, P. Kotrusz, C. Mangler, M. Mesko, J.C. Meyer and M. Hulman, Carbon, 72, 224 (2014); https://doi.org/10.1016/j.carbon.2014.02.006
H. Liu, W.R. Cao, Y. Su, Z. Chen and Y. Wang, J. Colloid Interface Sci., 398, 161 (2013); https://doi.org/10.1016/j.jcis.2013.02.007
B. Murugesan, A. Sivakumar, A. Loganathan and P. Sivakumar, J. Taiwan Inst. Chem. Eng., 71, 364 (2017); https://doi.org/10.1016/j.jtice.2016.11.020
Y. Xu, H. Bai, G. Lu, C. Li and G. Shi, J. Am. Chem. Soc., 130, 5856 (2008); https://doi.org/10.1021/ja800745y
A. Wang, S. Shen, Y. Zhao and W. Wu, J. Colloid Interface Sci., 445, 330 (2015); https://doi.org/10.1016/j.jcis.2015.01.017
R. Zamiri, H.A. Ahangar, A. Kaushal, A. Zakaria, G. Zamiri, D. Tobaldi and J.M.F. Ferreira, PLoS One, 10, 0131851 (2015); https://doi.org/10.1371/journal.pone.0122989
Y.K. Kho, W.Y. Teoh, A. Iwase, L. Madler, A. Kudo and R. Amal, ACS Appl. Mater. Interfaces, 3, 1997 (2011); https://doi.org/10.1021/am200247y
S.I. El-Hout, S.M. El-Sheikh, H.M.A. Hassan, F.A. Harraz, I.A. Ibrahim and E.A. El-Sharkawy, Appl. Catal. A Gen., 503, 176 (2015); https://doi.org/10.1016/j.apcata.2015.06.036
B. Lobato, V. Vretenár, P. Kotrusz, M. Hulman and T.A. Centeno, J. Colloid Interface Sci., 446, 203 (2015); https://doi.org/10.1016/j.jcis.2015.01.037
R. Jain, A.S. Poyraz, D.P. Gamliel, J. Valla, S.L. Suib and R. Maric, Appl. Catal. A Gen., 507, 1 (2015); https://doi.org/10.1016/j.apcata.2015.09.041
Y. Guo, X. Sun, Y. Liu, W. Wang, H. Qiu and J. Gao, Carbon, 50, 2513 (2012); https://doi.org/10.1016/j.carbon.2012.01.074
G. Jnawali, Y. Rao, J.H. Beck, N. Petrone, I. Kymissis, J. Hone and T.F. Heinz, ACS Nano, 9, 7175 (2015); https://doi.org/10.1021/acsnano.5b01896
J. Hu, C. Zou, Y. Su, M. Li, N. Hu, H. Ni, Z. Yang and Y. Zhang, J. Mater. Chem. C Mater. Opt. Electron. Devices, 5, 6862 (2017); https://doi.org/10.1039/C7TC01208J
S. Kaneco, M.A. Rahman, T. Suzuki, H. Katsumata and K. Ohta, J. Photochem. Photobiol. Chem., 163, 419 (2004); https://doi.org/10.1016/j.jphotochem.2004.01.012
J.J. Vilatela and D. Eder, ChemSusChem, 5, 456 (2012); https://doi.org/10.1002/cssc.201100536
J. Shi, Chem. Rev., 113, 2139 (2013); https://doi.org/10.1021/cr3002752
M.I. Litter, Appl. Catal. B, 23, 89 (1999); https://doi.org/10.1016/S0926-3373(99)00069-7
S. Alahiane, S. Qourzal, M. El Ouardi, A. Abaamrane and A. Assabbane, Am. J. Anal. Chem., 5, 445 (2014); https://doi.org/10.4236/ajac.2014.58053
D.F. Ollis, J. Phys. Chem. B, 109, 2439 (2005); https://doi.org/10.1021/jp040236f
A.V. Emeline, V.K. Ryabchuk and N. Serpone, J. Phys. Chem. B, 109, 18515 (2005); https://doi.org/10.1021/jp0523367
J. Matos, J. Laine and J.M. Herrmann, Appl. Catal. B, 18, 281 (1998); https://doi.org/10.1016/S0926-3373(98)00051-4
N.G. Asenjo, R. Santamarý’a, C. Blanco, M. Granda, P. A’lvarez and R. Menendez, Carbon, 55, 62 (2013); https://doi.org/10.1016/j.carbon.2012.12.010
A. Gomez-Barea, B. Leckner, A.L. Villanueva Perales and M. Campoy, Chem. Eng. J., 183, 408 (2012); https://doi.org/10.1016/j.cej.2011.12.053
H. Fu, T. Xu, S. Zhu and Y. Zhu, Environ. Sci. Technol., 42, 8064 (2008); https://doi.org/10.1021/es801484x
A. Sobczynski, L. Duczmal and W. Zmudzinski, J. Mol. Catal. Chem., 213, 225 (2004); https://doi.org/10.1016/j.molcata.2003.12.006
E.C. Lima, M.A. Adebayo and F.M. Machado, Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications, Springer, p. 33-69 (2015).
M.I. El-Khaiary and G.F. Malash, Hydrometallurgy, 105, 314 (2011); https://doi.org/10.1016/j.hydromet.2010.11.005
J.I. Steinfeld, J.S. Francisco and W.L. Hase, Chemical Kinetics and Dynamics, Prentice Hall Publishing: New Jersey, edn 2 (1999).
T. Ahmad, R. Phul, P. Alam, I.H. Lone, M. Shahazad, J. Ahmed, T. Ahamad and S.M. Alshehri, RSC Adv., 7, 27549 (2017); https://doi.org/10.1039/C6RA26888A