Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Co-Doped SnO2 Supported on Activated Carbon: An Efficient Solar Photocatalyst for the Degradation of Rhodamine B
Corresponding Author(s) : A.B. Gambhire
Asian Journal of Chemistry,
Vol. 32 No. 3 (2020): Vol 32 Issue 3
Abstract
A series of SnO2/activated carbon (AC) nanomaterials were prepared by co-doping V(III), Cr(III), Mn(II), Fe(III), Co(III), Ni(II), Cu(II), Zn(II) with nitrogen and sulphur, separately by co-precipitation method, combined with surfactant incorporation method. The as-prepared sample were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Brunauer-Teller method (BET), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and Raman spectroscopy. The results showed that the phase composition, crystallite size, BET surface area and optical absorption of samples varied significantly with the nature dopants. The photocatalytic activities of these co-doped SnO2/AC catalysts were investigated by degradation rhodamine B in aqueous solution under solar-light illumination. The results showed an appreciable enhancement in the photoactivity of Fe/N/SnO2/AC as compared to other co-doped SnO2/AC because of smaller particle size, higher specific surface area, photogenerated carrier′s separation and solar light absorption. The degradation rate of rhodamine B dye reached 98 % in 30 min, which is about 10 times higher than that of pure SnO2.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Molinari, E. Sarti, N. Marchetti and L. Pasti, Appl. Catal. B, 203, 9 (2017); https://doi.org/10.1016/j.apcatb.2016.09.031
- P. Wang, Y. Tang, Z. Dong, Z. Chen and T.T. Lim, J. Mater. Chem. A Mater. Energy Sustain., 1, 4718 (2013); https://doi.org/10.1039/c3ta01042b
- H. Shen, X. Zhao, L. Duan, R. Liu, H. Wu, T. Hou, X. Jiang and H. Gao, Appl. Surf. Sci., 391, 627 (2017); https://doi.org/10.1016/j.apsusc.2016.06.031
- F. Wang, T. Wang, J. Lang, Y. Su and X. Wang, J. Mol. Catal. Chem., 426, 52 (2017); https://doi.org/10.1016/j.molcata.2016.11.001
- J. Lim, D. Monllor-Satoca, J.S. Jang, S. Lee and W. Choi, Appl. Catal. B, 152-153, 233 (2014); https://doi.org/10.1016/j.apcatb.2014.01.026
- Q. Wali, Z.H. Bakr, N.A. Manshor, A. Fakharuddin and R. Jose, Sol. Energy, 132, 395 (2016); https://doi.org/10.1016/j.solener.2016.03.037
- R.R. Bhosale, S.R. Pujari, G.G. Muley, S.H. Patil, K.R. Patil, M.F. Shaikh and A.B. Gambhire, Sol. Energy, 103, 473 (2014); https://doi.org/10.1016/j.solener.2014.02.043
- Z. Wang, Y. Du, F. Zhang, Z. Zheng, X. Zhang, Q. Feng and C. Wang, Mater. Chem. Phys., 140, 373 (2013); https://doi.org/10.1016/j.matchemphys.2013.03.052
- N. Wang, J. Xu and L. Guan, Mater. Res. Bull., 46, 1372 (2011); https://doi.org/10.1016/j.materresbull.2011.05.014
- S. Zhuang, X. Xu, B. Feng, J. Hu, Y. Pang, G. Zhou, L. Tong and Y. Zhou, Appl. Mater. Interf., 6, 613 (2014); https://doi.org/10.1021/am4047014
- A. Nouri and A. Fakhri, Spectrochim. Acta A Mol. Biomol. Spectrosc., 138, 563 (2015); https://doi.org/10.1016/j.saa.2014.11.075
- E. Salmani, A. Laghrissi, M. Rouchdi, E. Benchafia, H. Ez-Zahraouy, N. Hassanain, A. Mzerd and A. Benyoussef, Sol. Energy, 155, 18 (2017); https://doi.org/10.1016/j.solener.2017.06.018
- J. Wei, S. Xue, P. Xie and R. Zou, Appl. Surf. Sci., 376, 172 (2016); https://doi.org/10.1016/j.apsusc.2016.03.058
- M.M. Rashad, A.A. Ismail, I. Osama, I.A. Ibrahim and A.-H.T. Kandil, Clean, Soil, Air Water, 42, 657 (2014); https://doi.org/10.1002/clen.201300032
- A.B. Gambhire, M.K. Lande, S.B. Kalokhe, M.D. Shirsat, K.R. Patil, R.S. Gholap and B.R. Arbad, Mater. Chem. Phys., 112, 719 (2008); https://doi.org/10.1016/j.matchemphys.2008.06.022
- L. Chen, J. Xu, Z. Li and J. Xia, Sol. Energy, 155, 593 (2017); https://doi.org/10.1016/j.solener.2017.06.062
- P.V. Reddy, B.S. Reddy and S.V. Reddy, Int. J. Chemtech Res., 6, 2568 (2014).
- S.A. Saleh, A.A. Ibrahim and S.H. Mohamed, Acta Phys. Pol. A, 129, 1220 (2016); https://doi.org/10.12693/APhysPolA.129.1220
- J. Kaur, J. Shah, R.K. Kotnala and K.C. Verma, Ceram. Int., 38, 5563 (2012); https://doi.org/10.1016/j.ceramint.2012.03.075
- I.S. Grover, R.C. Prajapat, S. Singh and B. Pal, Sol. Energy, 144, 612 (2017); https://doi.org/10.1016/j.solener.2017.02.001
- S. Martha, K.H. Reddy and K.M. Parida, J. Mater. Chem. A Mater. Energy Sustain., 2, 3621 (2014); https://doi.org/10.1039/c3ta14285j
- K.V. Anand, R. Mohan, R.M. Kumar, M.K. Chinnu and R. Jayavel, J. Exp. Nanosci., 9, 261 (2014); https://doi.org/10.1080/17458080.2012.656708
- V. Salles and S. Bernard, Nanomater. Nanotechnol., 6, 1 (2016); https://doi.org/10.5772/62161
- S.S. Shinde, R.A. Bansode, C.H. Bhosale and K.Y. Rajpure, J. Semicond., 32, 013001 (2011); https://doi.org/10.1088/1674-4926/32/1/013001
- J. Mazloom, F.E. Ghodsi and H. Golmojdeh, J. Alloys Compd., 639, 393 (2015); https://doi.org/10.1016/j.jallcom.2015.03.184
- N.R. Khalid, Z. Hong, E. Ahmed, Y. Zhang, H. Chan and M. Ahmad, Appl. Surf. Sci., 258, 5827 (2012); https://doi.org/10.1016/j.apsusc.2012.02.110
- H. Huang, S. Tian, J. Xu, Z. Xie, D. Zeng, D. Chen and G. Shen, Nanotechnology, 23, 105502 (2012); https://doi.org/10.1088/0957-4484/23/10/105502
- S.S. Pan, G.H. Li, L.B. Wang, Y.D. Shen, Y. Wang, T. Mei and X. Hu, Appl. Phys. Lett., 95, 222112 (2009); https://doi.org/10.1063/1.3258354
- L.C. Chen, C.M. Huang, M.C. Hsiao and F.R. Tsai, Chem. Eng. J., 165, 482 (2010); https://doi.org/10.1016/j.cej.2010.09.044
- F. Montilla, E. Morallón, A. De Battisti, S. Barison, S. Daolio and J.L. Vázquez, J. Phys. Chem. B, 108, 15976 (2004); https://doi.org/10.1021/jp048674+
- X. Jia, Y. Liu, X. Wu and Z. Zhang, Appl. Surf. Sci., 311, 609 (2014); https://doi.org/10.1016/j.apsusc.2014.05.118
- Y. Qin, J. Xiong, W. Zhang, L. Liu, Y. Cui and H. Gu, J. Mater. Sci., 50, 5865 (2015); https://doi.org/10.1007/s10853-015-9136-4
- T. Jia, W. Wang, F. Long, Z. Fu, H. Wang and Q. Zhang, J. Phys. Chem. C, 113, 9071 (2009); https://doi.org/10.1021/jp9021272
- N.R. Khalid, E. Ahmed, Z. Hong, Y. Zhang and M. Ahmad, Curr. Appl. Phys., 12, 1485 (2012); https://doi.org/10.1016/j.cap.2012.04.019
- N. Shanmugam, T. Sathya, G. Viruthagiri, C. Kalyanasundaram, R. Gobi and S. Ragupathy, Appl. Surf. Sci., 360, 283 (2016); https://doi.org/10.1016/j.apsusc.2015.11.008
References
A. Molinari, E. Sarti, N. Marchetti and L. Pasti, Appl. Catal. B, 203, 9 (2017); https://doi.org/10.1016/j.apcatb.2016.09.031
P. Wang, Y. Tang, Z. Dong, Z. Chen and T.T. Lim, J. Mater. Chem. A Mater. Energy Sustain., 1, 4718 (2013); https://doi.org/10.1039/c3ta01042b
H. Shen, X. Zhao, L. Duan, R. Liu, H. Wu, T. Hou, X. Jiang and H. Gao, Appl. Surf. Sci., 391, 627 (2017); https://doi.org/10.1016/j.apsusc.2016.06.031
F. Wang, T. Wang, J. Lang, Y. Su and X. Wang, J. Mol. Catal. Chem., 426, 52 (2017); https://doi.org/10.1016/j.molcata.2016.11.001
J. Lim, D. Monllor-Satoca, J.S. Jang, S. Lee and W. Choi, Appl. Catal. B, 152-153, 233 (2014); https://doi.org/10.1016/j.apcatb.2014.01.026
Q. Wali, Z.H. Bakr, N.A. Manshor, A. Fakharuddin and R. Jose, Sol. Energy, 132, 395 (2016); https://doi.org/10.1016/j.solener.2016.03.037
R.R. Bhosale, S.R. Pujari, G.G. Muley, S.H. Patil, K.R. Patil, M.F. Shaikh and A.B. Gambhire, Sol. Energy, 103, 473 (2014); https://doi.org/10.1016/j.solener.2014.02.043
Z. Wang, Y. Du, F. Zhang, Z. Zheng, X. Zhang, Q. Feng and C. Wang, Mater. Chem. Phys., 140, 373 (2013); https://doi.org/10.1016/j.matchemphys.2013.03.052
N. Wang, J. Xu and L. Guan, Mater. Res. Bull., 46, 1372 (2011); https://doi.org/10.1016/j.materresbull.2011.05.014
S. Zhuang, X. Xu, B. Feng, J. Hu, Y. Pang, G. Zhou, L. Tong and Y. Zhou, Appl. Mater. Interf., 6, 613 (2014); https://doi.org/10.1021/am4047014
A. Nouri and A. Fakhri, Spectrochim. Acta A Mol. Biomol. Spectrosc., 138, 563 (2015); https://doi.org/10.1016/j.saa.2014.11.075
E. Salmani, A. Laghrissi, M. Rouchdi, E. Benchafia, H. Ez-Zahraouy, N. Hassanain, A. Mzerd and A. Benyoussef, Sol. Energy, 155, 18 (2017); https://doi.org/10.1016/j.solener.2017.06.018
J. Wei, S. Xue, P. Xie and R. Zou, Appl. Surf. Sci., 376, 172 (2016); https://doi.org/10.1016/j.apsusc.2016.03.058
M.M. Rashad, A.A. Ismail, I. Osama, I.A. Ibrahim and A.-H.T. Kandil, Clean, Soil, Air Water, 42, 657 (2014); https://doi.org/10.1002/clen.201300032
A.B. Gambhire, M.K. Lande, S.B. Kalokhe, M.D. Shirsat, K.R. Patil, R.S. Gholap and B.R. Arbad, Mater. Chem. Phys., 112, 719 (2008); https://doi.org/10.1016/j.matchemphys.2008.06.022
L. Chen, J. Xu, Z. Li and J. Xia, Sol. Energy, 155, 593 (2017); https://doi.org/10.1016/j.solener.2017.06.062
P.V. Reddy, B.S. Reddy and S.V. Reddy, Int. J. Chemtech Res., 6, 2568 (2014).
S.A. Saleh, A.A. Ibrahim and S.H. Mohamed, Acta Phys. Pol. A, 129, 1220 (2016); https://doi.org/10.12693/APhysPolA.129.1220
J. Kaur, J. Shah, R.K. Kotnala and K.C. Verma, Ceram. Int., 38, 5563 (2012); https://doi.org/10.1016/j.ceramint.2012.03.075
I.S. Grover, R.C. Prajapat, S. Singh and B. Pal, Sol. Energy, 144, 612 (2017); https://doi.org/10.1016/j.solener.2017.02.001
S. Martha, K.H. Reddy and K.M. Parida, J. Mater. Chem. A Mater. Energy Sustain., 2, 3621 (2014); https://doi.org/10.1039/c3ta14285j
K.V. Anand, R. Mohan, R.M. Kumar, M.K. Chinnu and R. Jayavel, J. Exp. Nanosci., 9, 261 (2014); https://doi.org/10.1080/17458080.2012.656708
V. Salles and S. Bernard, Nanomater. Nanotechnol., 6, 1 (2016); https://doi.org/10.5772/62161
S.S. Shinde, R.A. Bansode, C.H. Bhosale and K.Y. Rajpure, J. Semicond., 32, 013001 (2011); https://doi.org/10.1088/1674-4926/32/1/013001
J. Mazloom, F.E. Ghodsi and H. Golmojdeh, J. Alloys Compd., 639, 393 (2015); https://doi.org/10.1016/j.jallcom.2015.03.184
N.R. Khalid, Z. Hong, E. Ahmed, Y. Zhang, H. Chan and M. Ahmad, Appl. Surf. Sci., 258, 5827 (2012); https://doi.org/10.1016/j.apsusc.2012.02.110
H. Huang, S. Tian, J. Xu, Z. Xie, D. Zeng, D. Chen and G. Shen, Nanotechnology, 23, 105502 (2012); https://doi.org/10.1088/0957-4484/23/10/105502
S.S. Pan, G.H. Li, L.B. Wang, Y.D. Shen, Y. Wang, T. Mei and X. Hu, Appl. Phys. Lett., 95, 222112 (2009); https://doi.org/10.1063/1.3258354
L.C. Chen, C.M. Huang, M.C. Hsiao and F.R. Tsai, Chem. Eng. J., 165, 482 (2010); https://doi.org/10.1016/j.cej.2010.09.044
F. Montilla, E. Morallón, A. De Battisti, S. Barison, S. Daolio and J.L. Vázquez, J. Phys. Chem. B, 108, 15976 (2004); https://doi.org/10.1021/jp048674+
X. Jia, Y. Liu, X. Wu and Z. Zhang, Appl. Surf. Sci., 311, 609 (2014); https://doi.org/10.1016/j.apsusc.2014.05.118
Y. Qin, J. Xiong, W. Zhang, L. Liu, Y. Cui and H. Gu, J. Mater. Sci., 50, 5865 (2015); https://doi.org/10.1007/s10853-015-9136-4
T. Jia, W. Wang, F. Long, Z. Fu, H. Wang and Q. Zhang, J. Phys. Chem. C, 113, 9071 (2009); https://doi.org/10.1021/jp9021272
N.R. Khalid, E. Ahmed, Z. Hong, Y. Zhang and M. Ahmad, Curr. Appl. Phys., 12, 1485 (2012); https://doi.org/10.1016/j.cap.2012.04.019
N. Shanmugam, T. Sathya, G. Viruthagiri, C. Kalyanasundaram, R. Gobi and S. Ragupathy, Appl. Surf. Sci., 360, 283 (2016); https://doi.org/10.1016/j.apsusc.2015.11.008