Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Interaction of CT-DNA with Ruthenium(II) Metallosurfactant Complexes: Synthesis, CMC Determination, Antitumour and Antimicrobial Activities
Corresponding Author(s) : N. Kumaraguru
Asian Journal of Chemistry,
Vol. 32 No. 3 (2020): Vol 32 Issue 3
Abstract
To enhance the application of metalosurfactants in the field of drug delivery, it is essential to acquire the role of surfactants in terms of micellization, hydrophobicity, interaction with nucleic acids, reactive changes with abnormal cells and pathogenic organisms. A new class of two ruthenium(II) metallosurfactant complexes [Ru(DMP)2(CA)Cl](ClO4) (1) and [Ru(DMP)2(CA)2](ClO4)2 (2), where DMP = 2,9-dimethyl[1,10]phenanthroline) and CA = cetyl amine were synthesized and characterized. The critical micelle concentration (CMC) and the thermodynamic parameters of micellization were determined and the variations suggest the expression of hydrophobic interaction in these complexes. The binding affinity of ruthenium(II) metallosurfactant complexes with CT-DNA has been investigated by spectroscopic and viscosity magnitudes. The outcomes expose that the complexes associate with CT-DNA through intercalation mode. Subsequently the complexes were taken for in vitro anticancer and antimicrobial inhibition study against human cervical cancer cell lines (HeLa) and pathogenic microorganisms and found that the complexes exhibited remarkable inhibitory action. The cytotoxic nature of the complexes towards, HeLa cells, was adopted by MTT assay and apoptosis were examined by AO/EB (acridine orange/ethidium bromide) and tryphanblue staining methods showing that complexes affected the viability of the cells significantly.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.P. Fricker, Dalton Trans., 43, 4903 (2007); https://doi.org/10.1039/b705551j
- E.R. Jamieson and S.J. Lippard, Chem. Rev., 99, 2467 (1999); https://doi.org/10.1021/cr980421n
- R.W.-Y. Sun, D.-L. Ma, E.L.-M. Wong and C.-M. Che, Dalton Trans., 4884 (2007); https://doi.org/10.1039/B705079H
- I. Kostova, Curr. Med. Chem., 13, 1085 (2006); https://doi.org/10.2174/092986706776360941
- B. Rosenberg, Cancer, 55, 2303 (1985); https://doi.org/10.1002/1097-0142(19850515)55:10<2303::AIDCNCR2820551002>3.0.CO;2-L
- V. Brabec, Nucleic Acid Res. And Mol. Bio, 71, 1 (2002); https://doi.org/10.1016/S0079-6603(02)71040-4
- D. Das and P. Mondal, New J. Chem., 39, 2515 (2015); https://doi.org/10.1039/C4NJ02118E
- L.A. Summers, Adv. Heterocycl. Chem., 22, 1 (1978); https://doi.org/10.1016/S0065-2725(08)60102-6
- P.G. Sammes and G. Yahioglu, Chem. Soc. Rev., 23, 327 (1994); https://doi.org/10.1039/cs9942300327
- C.R. Luman and F.N. Castellano, ed.: A.B.P. Lever, Phenanthroline Ligands, In: Comprehensive Coordination Chemistry II, Elsevier Ltd., vol. 1, pp 25-39 (2003).
- A. Bencini and V. Lippolis, Coord. Chem. Rev., 254, 2096 (2010); https://doi.org/10.1016/j.ccr.2010.04.008
- F.R. Keene, J.A. Smith and J.G. Collins, Coord. Chem. Rev., 253, 2021 (2009); https://doi.org/10.1016/j.ccr.2009.01.004
- M.R. Gill and J.A. Thomas, Chem. Soc. Rev., 41, 3179 (2012); https://doi.org/10.1039/c2cs15299a
- G. Li, L. Sun, L. Ji and H. Chao, Dalton Trans., 45, 13261 (2016); https://doi.org/10.1039/C6DT01624C
- C. Baudequin, E. Couallier, M. Rakib, I. Deguerry, R. Severac and M. Pabon, Sep. Purif. Technol., 76, 275 (2011); https://doi.org/10.1016/j.seppur.2010.10.016
- J. Vichapong, R. Burakham and S. Srijaranai, Talanta, 117, 221 (2013); https://doi.org/10.1016/j.talanta.2013.08.034
- M. Gao, Y. Wang, J. Dong, F. Li and K. Xie, Chemosphere, 158, 1 (2016); https://doi.org/10.1016/j.chemosphere.2016.05.024
- M.T. Garcia, I. Ribosa, L. Perez, A. Manresa and F. Comelles, Colloids Surf. B Biointerfaces, 123, 318 (2014); https://doi.org/10.1016/j.colsurfb.2014.09.033
- M. Bustelo, A. Pinazo, M.A. Manresa, M. Mitjans, M.P. Vinardell and L. P’erez, Colloids Surf. A Physicochem. Eng. Asp., 532, 501 (2017); https://doi.org/10.1016/j.colsurfa.2017.04.017
- R. Sanan, R. Kaur and R.K. Mahajan, RSC Adv., 4, 64877 (2014); https://doi.org/10.1039/C4RA10840J
- S. Veeralakshmi, S. Nehru, G. Sabapathi, P. Venuvanalingam, P. Kumar, S. Arunachalam, C. Anusha and V. Ravikumar, RSC Adv., 5, 31746 (2015); https://doi.org/10.1039/C5RA02763B
- G.W. Walker, R.J. Geue, A.M. Sargeson and C.A. Behm, Dalton Trans., 2992 (2003); https://doi.org/10.1039/b302230g
- M.M. Khowdairy, A.M. Badawi, M.A.S. Mohamed and M.Z. Mohamed, J. Cancer Res. Ther., 3, 198 (2007); https://doi.org/10.4103/0973-1482.38994
- J. Marmur, J. Mol. Biol., 3, 208 (1961); https://doi.org/10.1016/S0022-2836(61)80047-8
- J. Sinnko, Martin’s Physical Pharmacy and Pharmaceutical Sciences, Lippincott Williams & Wilkins, Baltimore, edn 5, Chap. 9 (2006).
- E. Mohajeri and G.D. Noudeh, E-J. Chem., 9, 2268 (2012); https://doi.org/10.1155/2012/961739
- J. Barthel, F. Feuerlein, R. Neueder and R. Wachter, J. Solution Chem., 9, 209 (1980); https://doi.org/10.1007/BF00648327
- J.F. Chambers, J.M. Stokes and R.H. Stokes, J. Phys. Chem., 60, 985 (1956); https://doi.org/10.1021/j150541a040
- R. Saeed, F. Uddin and H. Sultan, Phys. Chem. Liq., 45, 313 (2007); https://doi.org/10.1080/00319100500216084
- M.F. Reichmann, S.A. Rice, C.A. Thomas and P. Doty, J. Am. Chem. Soc., 76, 3047 (1954); https://doi.org/10.1021/ja01640a067
- S. Satyanarayana, J.C. Dabrowiak and J.B. Chaires, Biochemistry, 31, 9319 (1992); https://doi.org/10.1021/bi00154a001
- T. Mosmann, J. Immunol. Methods, 65, 55 (1983); https://doi.org/10.1016/0022-1759(83)90303-4.
- T. Sarkar, S. Banerjee and A. Hussain, RSC Adv., 5, 16641 (2015); https://doi.org/10.1039/C4RA17314G
- A. Monks, D. Scudiero, P. Skehan, R. Shoemaker, K. Paull, D. Vistica, C. Hose, J. Langley, P. Cronise, A. Vaigro-Wolff, M. Gray-Goodrich, H. Campbell, J. Mayo and M. Boyd, J. Natl. Cancer Inst., 83, 757 (1991); https://doi.org/10.1093/jnci/83.11.757
- A.W. Bauer, N.M. Kirby, J.C. Sherris and M. Turck, Am. J. Clin. Pathol., 45(4_ts), 493 (1966); https://doi.org/10.1093/ajcp/45.4_ts.493
- M.S. Hossain, S. Easmin, M.S. Islam and M. Rashid, J. Pharm. Pharmacol., 56, 1519 (2004); https://doi.org/10.1211/0022357044913
- R. Kumar, S. Arunachalam, V. Periasamy, C. Preethy, A. Riyasdeen and M. Akbarsha, J. Inorg. Biochem., 103, 117 (2009); https://doi.org/10.1016/j.jinorgbio.2008.09.010
- R.S. Kumar, S. Arunachalam, V.S. Periasamy, C.P. Preethy, A. Riyasdeen and M.A. Akbarsha, Aust. J. Chem., 62, 165 (2009); https://doi.org/10.1071/CH08281
- L. Jin and P. Yang, Polyhedron, 16, 3395 (1997); https://doi.org/10.1016/S0277-5387(97)00042-9
- T.I.A. Gerber, A. Abrahams, P. Mayer and E. Hosten, J. Coord. Chem., 56, 1397 (2003); https://doi.org/10.1080/00958970510001641691
- M.R. Rosenthal, J. Chem. Educ., 50, 331 (1973); https://doi.org/10.1021/ed050p331
- S. Ghosh, A.C. Barve, A.A. Kumbhar, A.S. Kumbhar, V.G. Puranik, P.A. Datar, U.B. Sonawane and R.R. Joshi, J. Inorg. Biochem., 100, 331 (2006); https://doi.org/10.1016/j.jinorgbio.2005.11.022
- J.D. Miller and R.H. Prince, J. Chem. Soc. A, 519 (1969); https://doi.org/10.1039/j19690000519
- S. Castellano, H. Gunther and S. Ebersole, J. Phys. Chem., 69, 4166 (1965); https://doi.org/10.1021/j100782a018
- V. Bhardwaj, P. Sharma, M.S. Chauhan and S. Chauhan, J. Saudi Chem. Soc., 20(Suppl. 1), 109 (2016); https://doi.org/10.1016/j.jscs.2012.09.008
- N. Kumaraguru and K. Santha Kumar, Phys. Chem. Liq., 48, 747 (2010); https://doi.org/10.1080/00319100902962707
- H. Akbas, M. Iscan and T. Sidim, J. Surfactants Deterg., 3, 77 (2000); https://doi.org/10.1007/s11743-000-0117-0
- A.A. Rafati, H. Gharibi and M. Rezaie-Sameti, J. Mol. Liq., 111, 109 (2004); https://doi.org/10.1016/j.molliq.2003.12.006
- I. Chakraborty and S.P. Moulik, J. Phys. Chem. B, 111, 3658 (2007); https://doi.org/10.1021/jp066500h
- K. Nagaraj, S. Ambika, S. Rajasri, S. Sakthinathan and S. Arunachalam, Colloids Surf. B Biointerfaces, 122, 151 (2014); https://doi.org/10.1016/j.colsurfb.2014.05.011
- J.J.H. Nusselder and J.B.F.N. Engberts, J. Colloid Interface Sci., 148, 353 (1992); https://doi.org/10.1016/0021-9797(92)90174-K
- K.K. Ghosh and V. Baghel, Indian J. Chem., 47A, 1230 (2008).
- Q. Wang, Q. Wu, J. Wang, D.D. Chen, P. Fan and B.X. Wang, Spectrochim. Acta A Mol. Biomol. Spectrosc., 117, 754 (2014); https://doi.org/10.1016/j.saa.2013.09.039
- L. Guo, Z. Zhang, H. Qiao, M. Liu, M. Shen, T. Yuan, J. Chen and D.D. Dionysiou, Spectrochim. Acta A Mol. Biomol. Spectrosc., 151, 237 (2015); https://doi.org/10.1016/j.saa.2015.06.114
- J.M. Kelly, A.B. Tossi, D.J. McConnell and C. OhUigin, Nucleic Acids Res., 13, 6017 (1985); https://doi.org/10.1093/nar/13.17.6017
- J.K. Barton, A.T. Danishefsky and J.M. Goldberg, J. Am. Chem. Soc., 106, 2172 (1984); https://doi.org/10.1021/ja00319a043
- S.A. Tysoe, R.J. Morgan, A.D. Baker and T.C. Strekas, J. Phys. Chem., 97, 1707 (1993); https://doi.org/10.1021/j100110a038
- R.F. Pasternack, E.J. Gibbs and J.J. Villafranca, Biochemistry, 22, 2406 (1983); https://doi.org/10.1021/bi00279a016
- J. Liu, H. Zhang, C. Chen, H. Deng, T. Lu and L. Ji, Dalton Trans., 114 (2003); https://doi.org/10.1039/b206079p
- J. Liu, T. Zhang, T. Lu, L. Qu, H. Zhou, Q. Zhang and L. Ji, J. Inorg. Biochem., 91, 269 (2002); https://doi.org/10.1016/S0162-0134(02)00441-5
- C. Liu, J.Y. Zhou, Q.X. Li, L.J. Wang, Z.R. Liao and H.B. Xu, J. Inorg. Biochem., 75, 233 (1999); https://doi.org/10.1016/S0162-0134(99)00037-9
- S. Zhang, Y. Zhu, C. Tu, H. Wei, Z. Yang, L. Lin, J. Ding, J. Zhang and Z. Guo, J. Inorg. Biochem., 98, 2099 (2004); https://doi.org/10.1016/j.jinorgbio.2004.09.014
- M.T. Carter, M. Rodriguez and A.J. Bard, J. Am. Chem. Soc., 111, 8901 (1989); https://doi.org/10.1021/ja00206a020
- J.-Z. Wu, B.-H. Ye, L. Wang, L.-N. Ji, J.-Y. Zhou, R.-H. Li and Z.-Y. Zhou, J. Chem. Soc., Dalton Trans., 1395 (1997); https://doi.org/10.1039/a605269j
- L. Ji, Q. Zhang and J. Liu, Sci. China, 44, 246 (2001); https://doi.org/10.1007/BF02879615
- A.M. Pyle, J.P. Rehmann, R. Meshoyrer, C.V. Kumar, N.J. Turro and J.K. Barton, J. Am. Chem. Soc., 111, 3051 (1989); https://doi.org/10.1021/ja00190a046
- P. Krishnamoorthy, P. Sathyadevi, A.H. Cowley, R.R. Butorac and N. Dharmaraj, Eur. J. Med. Chem., 46, 3376 (2011); https://doi.org/10.1016/j.ejmech.2011.05.001
- P. Kumar, S. Gorai, M.K. Santra, B. Mondal and D. Manna, Dalton Trans., 41, 7573 (2012); https://doi.org/10.1039/c2dt30232b
- S. Tsiliou, L.A. Kefala, F. Perdih, I. Turel, D.P. Kessissoglou and G. Psomas, Eur. J. Med. Chem., 48, 132 (2012); https://doi.org/10.1016/j.ejmech.2011.12.004
- F. Xue, C.-Z. Xie, Y.-W. Zhang, Z. Qiao, X. Qiao, J.-Y. Xu and S.-P. Yan, J. Inorg. Biochem., 115, 78 (2012); https://doi.org/10.1016/j.jinorgbio.2012.05.018
- T. Topalã, A. Bodoki, L. Oprean and R. Oprean, Clujul. Med., 62, 1049 (2014); https://doi.org/10.15386/cjmed-357.
- V.A. Izumrudov, M.V. Zhiryakova and A.A. Goulko, Langmuir, 18, 10348 (2002); https://doi.org/10.1021/la020592u
- V.A. Izumrudov, M.V. Zhiryakova and S.E. Kudaibergenov, Biopolymers, 52, 94 (1999); https://doi.org/10.1002/1097-0282(1999)52:2<94::AID-BIP3>3.0.CO;2-O
- B.C. Baguley and M. Le Bret, Biochemistry, 23, 937 (1984); https://doi.org/10.1021/bi00300a022
- K. Nagaraj, K. Senthil Murugan, P. Thangamuniyandi and S. Sakthinathan, J. Fluoresc., 24, 1701 (2014); https://doi.org/10.1007/s10895-014-1457-1
- T.B. Wyman, F. Nicol, O. Zelphati, P.V. Scaria, C. Plank and F.C. Szoka, Biochemistry, 36, 3008 (1997); https://doi.org/10.1021/bi9618474
- S. Bhattacharya and S.S. Mandal, Biochim. Biophys. Acta, 1323, 29 (1997); https://doi.org/10.1016/S0005-2736(96)00171-X
- J.R. Lakowicz and G. Weber, Biochemistry, 12, 4161 (1973); https://doi.org/10.1021/bi00745a020
- J. Luis García-Giménez, M. González-Álvarez, M. Liu-González, B. Macías, J. Borrás and G. Alzuet, J. Inorg. Biochem., 103, 923 (2009); https://doi.org/10.1016/j.jinorgbio.2009.04.003
- P. Sathyadevi, P. Krishnamoorthy, E. Jayanthi, R.R. Butorac, A.H. Cowley and N. Dharmaraj, Inorg. Chim. Acta, 384, 83 (2012); https://doi.org/10.1016/j.ica.2011.11.033
- F.A. Beckford, J. Thessing, M. Shaloski Jr., P.C. Mbarushimana, A. Brock, J. Didion, J. Woods, A. Gonzalez-Sarrías and N.P. Seeram, J. Mol. Struct., 992, 39 (2011); https://doi.org/10.1016/j.molstruc.2011.02.029
- J.C. Peberdy, J. Malina, S. Khalid, M.J. Hannon and A. Rodger, J. Inorg. Biochem., 101, 1937 (2007); https://doi.org/10.1016/j.jinorgbio.2007.07.005
- K.S. Ghosh, B.K. Sahoo, D. Jana and S. Dasgupta, J. Inorg. Biochem., 102, 1711 (2008); https://doi.org/10.1016/j.jinorgbio.2008.04.008
- J.R. Lacowicz, Principles of Fluorescence Spectroscopy, Springer: New York, edn 3 (2006).
- D.P. Heller and C.L. Greenstock, Biophys. Chem., 50, 305 (1994); https://doi.org/10.1016/0301-4622(93)E0101-A
- S. Satyanarayana, J.C. Dabrowiak and J.B. Chaires, Biochemistry, 32, 2573 (1993); https://doi.org/10.1021/bi00061a015
- B. Peng, H. Chao, B. Sun, H. Li, F. Gao and L.N. Ji, J. Inorg. Biochem., 101, 404 (2007); https://doi.org/10.1016/j.jinorgbio.2006.11.008
- R. Dias, S. Mel’nikov, B. Lindman and M.G. Miguel, Langmuir, 16, 9577 (2000); https://doi.org/10.1021/la000640f
- A. Kosiha, C. Parthiban and K.P. Elango, J. Photochem. Photobiol. B, 168, 165 (2017); https://doi.org/10.1016/j.jphotobiol.2017.02.010
- M. Shokzradeh and M. Madanloo, J. Res. Med. Dental Sci., 5, 233 (2017).
- M.A. Zoroddu, S. Zanetti, R. Pogni and R. Basosi, J. Inorg. Biochem., 63, 291 (1996); https://doi.org/10.1016/0162-0134(96)00015-3
References
S.P. Fricker, Dalton Trans., 43, 4903 (2007); https://doi.org/10.1039/b705551j
E.R. Jamieson and S.J. Lippard, Chem. Rev., 99, 2467 (1999); https://doi.org/10.1021/cr980421n
R.W.-Y. Sun, D.-L. Ma, E.L.-M. Wong and C.-M. Che, Dalton Trans., 4884 (2007); https://doi.org/10.1039/B705079H
I. Kostova, Curr. Med. Chem., 13, 1085 (2006); https://doi.org/10.2174/092986706776360941
B. Rosenberg, Cancer, 55, 2303 (1985); https://doi.org/10.1002/1097-0142(19850515)55:10<2303::AIDCNCR2820551002>3.0.CO;2-L
V. Brabec, Nucleic Acid Res. And Mol. Bio, 71, 1 (2002); https://doi.org/10.1016/S0079-6603(02)71040-4
D. Das and P. Mondal, New J. Chem., 39, 2515 (2015); https://doi.org/10.1039/C4NJ02118E
L.A. Summers, Adv. Heterocycl. Chem., 22, 1 (1978); https://doi.org/10.1016/S0065-2725(08)60102-6
P.G. Sammes and G. Yahioglu, Chem. Soc. Rev., 23, 327 (1994); https://doi.org/10.1039/cs9942300327
C.R. Luman and F.N. Castellano, ed.: A.B.P. Lever, Phenanthroline Ligands, In: Comprehensive Coordination Chemistry II, Elsevier Ltd., vol. 1, pp 25-39 (2003).
A. Bencini and V. Lippolis, Coord. Chem. Rev., 254, 2096 (2010); https://doi.org/10.1016/j.ccr.2010.04.008
F.R. Keene, J.A. Smith and J.G. Collins, Coord. Chem. Rev., 253, 2021 (2009); https://doi.org/10.1016/j.ccr.2009.01.004
M.R. Gill and J.A. Thomas, Chem. Soc. Rev., 41, 3179 (2012); https://doi.org/10.1039/c2cs15299a
G. Li, L. Sun, L. Ji and H. Chao, Dalton Trans., 45, 13261 (2016); https://doi.org/10.1039/C6DT01624C
C. Baudequin, E. Couallier, M. Rakib, I. Deguerry, R. Severac and M. Pabon, Sep. Purif. Technol., 76, 275 (2011); https://doi.org/10.1016/j.seppur.2010.10.016
J. Vichapong, R. Burakham and S. Srijaranai, Talanta, 117, 221 (2013); https://doi.org/10.1016/j.talanta.2013.08.034
M. Gao, Y. Wang, J. Dong, F. Li and K. Xie, Chemosphere, 158, 1 (2016); https://doi.org/10.1016/j.chemosphere.2016.05.024
M.T. Garcia, I. Ribosa, L. Perez, A. Manresa and F. Comelles, Colloids Surf. B Biointerfaces, 123, 318 (2014); https://doi.org/10.1016/j.colsurfb.2014.09.033
M. Bustelo, A. Pinazo, M.A. Manresa, M. Mitjans, M.P. Vinardell and L. P’erez, Colloids Surf. A Physicochem. Eng. Asp., 532, 501 (2017); https://doi.org/10.1016/j.colsurfa.2017.04.017
R. Sanan, R. Kaur and R.K. Mahajan, RSC Adv., 4, 64877 (2014); https://doi.org/10.1039/C4RA10840J
S. Veeralakshmi, S. Nehru, G. Sabapathi, P. Venuvanalingam, P. Kumar, S. Arunachalam, C. Anusha and V. Ravikumar, RSC Adv., 5, 31746 (2015); https://doi.org/10.1039/C5RA02763B
G.W. Walker, R.J. Geue, A.M. Sargeson and C.A. Behm, Dalton Trans., 2992 (2003); https://doi.org/10.1039/b302230g
M.M. Khowdairy, A.M. Badawi, M.A.S. Mohamed and M.Z. Mohamed, J. Cancer Res. Ther., 3, 198 (2007); https://doi.org/10.4103/0973-1482.38994
J. Marmur, J. Mol. Biol., 3, 208 (1961); https://doi.org/10.1016/S0022-2836(61)80047-8
J. Sinnko, Martin’s Physical Pharmacy and Pharmaceutical Sciences, Lippincott Williams & Wilkins, Baltimore, edn 5, Chap. 9 (2006).
E. Mohajeri and G.D. Noudeh, E-J. Chem., 9, 2268 (2012); https://doi.org/10.1155/2012/961739
J. Barthel, F. Feuerlein, R. Neueder and R. Wachter, J. Solution Chem., 9, 209 (1980); https://doi.org/10.1007/BF00648327
J.F. Chambers, J.M. Stokes and R.H. Stokes, J. Phys. Chem., 60, 985 (1956); https://doi.org/10.1021/j150541a040
R. Saeed, F. Uddin and H. Sultan, Phys. Chem. Liq., 45, 313 (2007); https://doi.org/10.1080/00319100500216084
M.F. Reichmann, S.A. Rice, C.A. Thomas and P. Doty, J. Am. Chem. Soc., 76, 3047 (1954); https://doi.org/10.1021/ja01640a067
S. Satyanarayana, J.C. Dabrowiak and J.B. Chaires, Biochemistry, 31, 9319 (1992); https://doi.org/10.1021/bi00154a001
T. Mosmann, J. Immunol. Methods, 65, 55 (1983); https://doi.org/10.1016/0022-1759(83)90303-4.
T. Sarkar, S. Banerjee and A. Hussain, RSC Adv., 5, 16641 (2015); https://doi.org/10.1039/C4RA17314G
A. Monks, D. Scudiero, P. Skehan, R. Shoemaker, K. Paull, D. Vistica, C. Hose, J. Langley, P. Cronise, A. Vaigro-Wolff, M. Gray-Goodrich, H. Campbell, J. Mayo and M. Boyd, J. Natl. Cancer Inst., 83, 757 (1991); https://doi.org/10.1093/jnci/83.11.757
A.W. Bauer, N.M. Kirby, J.C. Sherris and M. Turck, Am. J. Clin. Pathol., 45(4_ts), 493 (1966); https://doi.org/10.1093/ajcp/45.4_ts.493
M.S. Hossain, S. Easmin, M.S. Islam and M. Rashid, J. Pharm. Pharmacol., 56, 1519 (2004); https://doi.org/10.1211/0022357044913
R. Kumar, S. Arunachalam, V. Periasamy, C. Preethy, A. Riyasdeen and M. Akbarsha, J. Inorg. Biochem., 103, 117 (2009); https://doi.org/10.1016/j.jinorgbio.2008.09.010
R.S. Kumar, S. Arunachalam, V.S. Periasamy, C.P. Preethy, A. Riyasdeen and M.A. Akbarsha, Aust. J. Chem., 62, 165 (2009); https://doi.org/10.1071/CH08281
L. Jin and P. Yang, Polyhedron, 16, 3395 (1997); https://doi.org/10.1016/S0277-5387(97)00042-9
T.I.A. Gerber, A. Abrahams, P. Mayer and E. Hosten, J. Coord. Chem., 56, 1397 (2003); https://doi.org/10.1080/00958970510001641691
M.R. Rosenthal, J. Chem. Educ., 50, 331 (1973); https://doi.org/10.1021/ed050p331
S. Ghosh, A.C. Barve, A.A. Kumbhar, A.S. Kumbhar, V.G. Puranik, P.A. Datar, U.B. Sonawane and R.R. Joshi, J. Inorg. Biochem., 100, 331 (2006); https://doi.org/10.1016/j.jinorgbio.2005.11.022
J.D. Miller and R.H. Prince, J. Chem. Soc. A, 519 (1969); https://doi.org/10.1039/j19690000519
S. Castellano, H. Gunther and S. Ebersole, J. Phys. Chem., 69, 4166 (1965); https://doi.org/10.1021/j100782a018
V. Bhardwaj, P. Sharma, M.S. Chauhan and S. Chauhan, J. Saudi Chem. Soc., 20(Suppl. 1), 109 (2016); https://doi.org/10.1016/j.jscs.2012.09.008
N. Kumaraguru and K. Santha Kumar, Phys. Chem. Liq., 48, 747 (2010); https://doi.org/10.1080/00319100902962707
H. Akbas, M. Iscan and T. Sidim, J. Surfactants Deterg., 3, 77 (2000); https://doi.org/10.1007/s11743-000-0117-0
A.A. Rafati, H. Gharibi and M. Rezaie-Sameti, J. Mol. Liq., 111, 109 (2004); https://doi.org/10.1016/j.molliq.2003.12.006
I. Chakraborty and S.P. Moulik, J. Phys. Chem. B, 111, 3658 (2007); https://doi.org/10.1021/jp066500h
K. Nagaraj, S. Ambika, S. Rajasri, S. Sakthinathan and S. Arunachalam, Colloids Surf. B Biointerfaces, 122, 151 (2014); https://doi.org/10.1016/j.colsurfb.2014.05.011
J.J.H. Nusselder and J.B.F.N. Engberts, J. Colloid Interface Sci., 148, 353 (1992); https://doi.org/10.1016/0021-9797(92)90174-K
K.K. Ghosh and V. Baghel, Indian J. Chem., 47A, 1230 (2008).
Q. Wang, Q. Wu, J. Wang, D.D. Chen, P. Fan and B.X. Wang, Spectrochim. Acta A Mol. Biomol. Spectrosc., 117, 754 (2014); https://doi.org/10.1016/j.saa.2013.09.039
L. Guo, Z. Zhang, H. Qiao, M. Liu, M. Shen, T. Yuan, J. Chen and D.D. Dionysiou, Spectrochim. Acta A Mol. Biomol. Spectrosc., 151, 237 (2015); https://doi.org/10.1016/j.saa.2015.06.114
J.M. Kelly, A.B. Tossi, D.J. McConnell and C. OhUigin, Nucleic Acids Res., 13, 6017 (1985); https://doi.org/10.1093/nar/13.17.6017
J.K. Barton, A.T. Danishefsky and J.M. Goldberg, J. Am. Chem. Soc., 106, 2172 (1984); https://doi.org/10.1021/ja00319a043
S.A. Tysoe, R.J. Morgan, A.D. Baker and T.C. Strekas, J. Phys. Chem., 97, 1707 (1993); https://doi.org/10.1021/j100110a038
R.F. Pasternack, E.J. Gibbs and J.J. Villafranca, Biochemistry, 22, 2406 (1983); https://doi.org/10.1021/bi00279a016
J. Liu, H. Zhang, C. Chen, H. Deng, T. Lu and L. Ji, Dalton Trans., 114 (2003); https://doi.org/10.1039/b206079p
J. Liu, T. Zhang, T. Lu, L. Qu, H. Zhou, Q. Zhang and L. Ji, J. Inorg. Biochem., 91, 269 (2002); https://doi.org/10.1016/S0162-0134(02)00441-5
C. Liu, J.Y. Zhou, Q.X. Li, L.J. Wang, Z.R. Liao and H.B. Xu, J. Inorg. Biochem., 75, 233 (1999); https://doi.org/10.1016/S0162-0134(99)00037-9
S. Zhang, Y. Zhu, C. Tu, H. Wei, Z. Yang, L. Lin, J. Ding, J. Zhang and Z. Guo, J. Inorg. Biochem., 98, 2099 (2004); https://doi.org/10.1016/j.jinorgbio.2004.09.014
M.T. Carter, M. Rodriguez and A.J. Bard, J. Am. Chem. Soc., 111, 8901 (1989); https://doi.org/10.1021/ja00206a020
J.-Z. Wu, B.-H. Ye, L. Wang, L.-N. Ji, J.-Y. Zhou, R.-H. Li and Z.-Y. Zhou, J. Chem. Soc., Dalton Trans., 1395 (1997); https://doi.org/10.1039/a605269j
L. Ji, Q. Zhang and J. Liu, Sci. China, 44, 246 (2001); https://doi.org/10.1007/BF02879615
A.M. Pyle, J.P. Rehmann, R. Meshoyrer, C.V. Kumar, N.J. Turro and J.K. Barton, J. Am. Chem. Soc., 111, 3051 (1989); https://doi.org/10.1021/ja00190a046
P. Krishnamoorthy, P. Sathyadevi, A.H. Cowley, R.R. Butorac and N. Dharmaraj, Eur. J. Med. Chem., 46, 3376 (2011); https://doi.org/10.1016/j.ejmech.2011.05.001
P. Kumar, S. Gorai, M.K. Santra, B. Mondal and D. Manna, Dalton Trans., 41, 7573 (2012); https://doi.org/10.1039/c2dt30232b
S. Tsiliou, L.A. Kefala, F. Perdih, I. Turel, D.P. Kessissoglou and G. Psomas, Eur. J. Med. Chem., 48, 132 (2012); https://doi.org/10.1016/j.ejmech.2011.12.004
F. Xue, C.-Z. Xie, Y.-W. Zhang, Z. Qiao, X. Qiao, J.-Y. Xu and S.-P. Yan, J. Inorg. Biochem., 115, 78 (2012); https://doi.org/10.1016/j.jinorgbio.2012.05.018
T. Topalã, A. Bodoki, L. Oprean and R. Oprean, Clujul. Med., 62, 1049 (2014); https://doi.org/10.15386/cjmed-357.
V.A. Izumrudov, M.V. Zhiryakova and A.A. Goulko, Langmuir, 18, 10348 (2002); https://doi.org/10.1021/la020592u
V.A. Izumrudov, M.V. Zhiryakova and S.E. Kudaibergenov, Biopolymers, 52, 94 (1999); https://doi.org/10.1002/1097-0282(1999)52:2<94::AID-BIP3>3.0.CO;2-O
B.C. Baguley and M. Le Bret, Biochemistry, 23, 937 (1984); https://doi.org/10.1021/bi00300a022
K. Nagaraj, K. Senthil Murugan, P. Thangamuniyandi and S. Sakthinathan, J. Fluoresc., 24, 1701 (2014); https://doi.org/10.1007/s10895-014-1457-1
T.B. Wyman, F. Nicol, O. Zelphati, P.V. Scaria, C. Plank and F.C. Szoka, Biochemistry, 36, 3008 (1997); https://doi.org/10.1021/bi9618474
S. Bhattacharya and S.S. Mandal, Biochim. Biophys. Acta, 1323, 29 (1997); https://doi.org/10.1016/S0005-2736(96)00171-X
J.R. Lakowicz and G. Weber, Biochemistry, 12, 4161 (1973); https://doi.org/10.1021/bi00745a020
J. Luis García-Giménez, M. González-Álvarez, M. Liu-González, B. Macías, J. Borrás and G. Alzuet, J. Inorg. Biochem., 103, 923 (2009); https://doi.org/10.1016/j.jinorgbio.2009.04.003
P. Sathyadevi, P. Krishnamoorthy, E. Jayanthi, R.R. Butorac, A.H. Cowley and N. Dharmaraj, Inorg. Chim. Acta, 384, 83 (2012); https://doi.org/10.1016/j.ica.2011.11.033
F.A. Beckford, J. Thessing, M. Shaloski Jr., P.C. Mbarushimana, A. Brock, J. Didion, J. Woods, A. Gonzalez-Sarrías and N.P. Seeram, J. Mol. Struct., 992, 39 (2011); https://doi.org/10.1016/j.molstruc.2011.02.029
J.C. Peberdy, J. Malina, S. Khalid, M.J. Hannon and A. Rodger, J. Inorg. Biochem., 101, 1937 (2007); https://doi.org/10.1016/j.jinorgbio.2007.07.005
K.S. Ghosh, B.K. Sahoo, D. Jana and S. Dasgupta, J. Inorg. Biochem., 102, 1711 (2008); https://doi.org/10.1016/j.jinorgbio.2008.04.008
J.R. Lacowicz, Principles of Fluorescence Spectroscopy, Springer: New York, edn 3 (2006).
D.P. Heller and C.L. Greenstock, Biophys. Chem., 50, 305 (1994); https://doi.org/10.1016/0301-4622(93)E0101-A
S. Satyanarayana, J.C. Dabrowiak and J.B. Chaires, Biochemistry, 32, 2573 (1993); https://doi.org/10.1021/bi00061a015
B. Peng, H. Chao, B. Sun, H. Li, F. Gao and L.N. Ji, J. Inorg. Biochem., 101, 404 (2007); https://doi.org/10.1016/j.jinorgbio.2006.11.008
R. Dias, S. Mel’nikov, B. Lindman and M.G. Miguel, Langmuir, 16, 9577 (2000); https://doi.org/10.1021/la000640f
A. Kosiha, C. Parthiban and K.P. Elango, J. Photochem. Photobiol. B, 168, 165 (2017); https://doi.org/10.1016/j.jphotobiol.2017.02.010
M. Shokzradeh and M. Madanloo, J. Res. Med. Dental Sci., 5, 233 (2017).
M.A. Zoroddu, S. Zanetti, R. Pogni and R. Basosi, J. Inorg. Biochem., 63, 291 (1996); https://doi.org/10.1016/0162-0134(96)00015-3