Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Enhanced Efficiency of Photogalvanic Cell based on Mixed Triphenylmethane Dyes
Corresponding Author(s) : Chhagan Lal
Asian Journal of Chemistry,
Vol. 32 No. 2 (2020): Vol 32 Issue 2
Abstract
The study focused on the enhancement of solar power generation and storage capacity of a photogalvanic cell ethylene diaminetetraacetic acid as reductant, xylene cyanol FF and patent blue as photosensitizers. This chemical system with changed concentrations, a combination electrode and a very small Pt electrode was used to fabricate a modified photogalvanic cell. The modified cell showed greatly enhanced performance in terms of photopotential (868.0 mV), photocurrent (230.0 μA), efficiency (0.64 %) and the maximum output (power) of the cell was found to be 199.64 W. The photogalvanic cell can be used at this power level for 115 min in the dark due to the storage capacity of the cell. The effects of various parameters such as pH, reductant concentration, dye concentration, diffusion length, light intensity, and electrode area on electrical output of the cell were also investigated. The current-voltage (i-v) characteristics of the cell have been studied and a mechanism for the photocurrent generation in photogalvanic cell has also been proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Malviya and P.P. Solanki, Renew. Sustain. Energy Rev., 59, 662 (2016); https://doi.org/10.1016/j.rser.2015.12.295.
- C. Mall, S. Tiwari and P.P. Solanki, J. Saudi Chem. Soc., 23, 83 (2019); https://doi.org/10.1016/j.jscs.2018.04.007.
- E. Rabinowitch, J. Chem. Phys., 8, 551 (1940); https://doi.org/10.1063/1.1750711.
- A.E. Potter Jr. and L.H. Thaller, Sol. Energy, 3, 1 (1959); https://doi.org/10.1016/0038-092X(59)90001-5.
- K.M. Gangotri and V. Indora, Sol. Energy, 84, 271 (2010); https://doi.org/10.1016/j.solener.2009.11.007.
- K.R. Genwa and N.C. Khatri, Energy Fuels, 23, 1024 (2009); https://doi.org/10.1021/ef800747w.
- P. Koli, Int. J. Ambient Energy, 40, 868 (2019); https://doi.org/10.1080/01430750.2018.1437565.
- S. Pokhrel and K.S. Nagaraja, Sol. Energy Mater. Sol. Cells, 93, 244 (2009); https://doi.org/10.1016/j.solmat.2008.10.007.
- P. Koli, Appl. Energy, 118, 231 (2014); https://doi.org/10.1016/j.apenergy.2013.12.035.
- Z. Yu, F. Li and L. Sun, Energy Environ. Sci., 8, 760 (2015); https://doi.org/10.1039/C4EE03565H.
- C. Lal, J. Power Sources, 164, 926 (2007); https://doi.org/10.1016/j.jpowsour.2006.11.020.
- K.K. Bhati and K.M. Gangotri, Elect. Power Energy Syst., 33, 155 (2011); https://doi.org/10.1016/j.ijepes.2010.08.001.
- K.R. Genwa and A. Chouhan, J. Chem. Sci., 116, 339 (2004); https://doi.org/10.1007/BF02711435.
- S. Yadav and C. Lal, Int. J. Green Energy, 8, 265 (2011); https://doi.org/10.1080/15435075.2010.549257.
- K.R. Genwa and M. Genwa, Sol. Energy Mater. Sol. Cells, 92, 522 (2008); https://doi.org/10.1016/j.solmat.2007.10.010.
- S. Dube, Int. J. Energy Res., 17, 311 (1993); https://doi.org/10.1002/er.4440170408.
- S. Yadav and C. Lal, Asian J. Chem., 19, 981 (2007).
- S. Yadav and C. Lal, Energy Convers. Manage., 66, 271 (2013); https://doi.org/10.1016/j.enconman.2012.09.011.
- C. Lal and K.M. Gangotri, Environ. Prog. Sustain. Energy, 30, 754 (2011); https://doi.org/10.1002/ep.10524.
- K. Sharma, V. Sharma and S.S. Sharma, Nanoscale Res. Lett., 13, 381 (2018); https://doi.org/10.1186/s11671-018-2760-6.
- J. Day, S. Senthilarasu and T.K. Mallick, Renew. Energy, 132, 186 (2019); https://doi.org/10.1016/j.renene.2018.07.101.
- M.R. Karim, M.A. Shar and S. Abdullah, Curr. Nanosci., 15, 501 (2019); https://doi.org/10.2174/1573413715666190325165613.
- P.D. Wildes and N.N. Lichtin, J. Am. Chem. Soc., 100, 6568 (1978); https://doi.org/10.1021/ja00489a004.
- P.P. Solanki and K.M. Gangotri, World Renewable Energy Congress, Linkoping, Sweden, 8-11 May, pp. 2807-2814 (2011).
- P. Koli, Arab. J. Chem., 10, 1077 (2017); https://doi.org/10.1016/j.arabjc.2014.11.061.
- S.A. Mahmoud and B.S. Mohamed, Int. J. Electrochem. Sci., 10, 3340 (2015).
- K.K. Rohatgi-Mukherjee, M. Bagchi and B.B. Bhowmik, Indian J. Chem., 24A, 1002 (1985).
References
A. Malviya and P.P. Solanki, Renew. Sustain. Energy Rev., 59, 662 (2016); https://doi.org/10.1016/j.rser.2015.12.295.
C. Mall, S. Tiwari and P.P. Solanki, J. Saudi Chem. Soc., 23, 83 (2019); https://doi.org/10.1016/j.jscs.2018.04.007.
E. Rabinowitch, J. Chem. Phys., 8, 551 (1940); https://doi.org/10.1063/1.1750711.
A.E. Potter Jr. and L.H. Thaller, Sol. Energy, 3, 1 (1959); https://doi.org/10.1016/0038-092X(59)90001-5.
K.M. Gangotri and V. Indora, Sol. Energy, 84, 271 (2010); https://doi.org/10.1016/j.solener.2009.11.007.
K.R. Genwa and N.C. Khatri, Energy Fuels, 23, 1024 (2009); https://doi.org/10.1021/ef800747w.
P. Koli, Int. J. Ambient Energy, 40, 868 (2019); https://doi.org/10.1080/01430750.2018.1437565.
S. Pokhrel and K.S. Nagaraja, Sol. Energy Mater. Sol. Cells, 93, 244 (2009); https://doi.org/10.1016/j.solmat.2008.10.007.
P. Koli, Appl. Energy, 118, 231 (2014); https://doi.org/10.1016/j.apenergy.2013.12.035.
Z. Yu, F. Li and L. Sun, Energy Environ. Sci., 8, 760 (2015); https://doi.org/10.1039/C4EE03565H.
C. Lal, J. Power Sources, 164, 926 (2007); https://doi.org/10.1016/j.jpowsour.2006.11.020.
K.K. Bhati and K.M. Gangotri, Elect. Power Energy Syst., 33, 155 (2011); https://doi.org/10.1016/j.ijepes.2010.08.001.
K.R. Genwa and A. Chouhan, J. Chem. Sci., 116, 339 (2004); https://doi.org/10.1007/BF02711435.
S. Yadav and C. Lal, Int. J. Green Energy, 8, 265 (2011); https://doi.org/10.1080/15435075.2010.549257.
K.R. Genwa and M. Genwa, Sol. Energy Mater. Sol. Cells, 92, 522 (2008); https://doi.org/10.1016/j.solmat.2007.10.010.
S. Dube, Int. J. Energy Res., 17, 311 (1993); https://doi.org/10.1002/er.4440170408.
S. Yadav and C. Lal, Asian J. Chem., 19, 981 (2007).
S. Yadav and C. Lal, Energy Convers. Manage., 66, 271 (2013); https://doi.org/10.1016/j.enconman.2012.09.011.
C. Lal and K.M. Gangotri, Environ. Prog. Sustain. Energy, 30, 754 (2011); https://doi.org/10.1002/ep.10524.
K. Sharma, V. Sharma and S.S. Sharma, Nanoscale Res. Lett., 13, 381 (2018); https://doi.org/10.1186/s11671-018-2760-6.
J. Day, S. Senthilarasu and T.K. Mallick, Renew. Energy, 132, 186 (2019); https://doi.org/10.1016/j.renene.2018.07.101.
M.R. Karim, M.A. Shar and S. Abdullah, Curr. Nanosci., 15, 501 (2019); https://doi.org/10.2174/1573413715666190325165613.
P.D. Wildes and N.N. Lichtin, J. Am. Chem. Soc., 100, 6568 (1978); https://doi.org/10.1021/ja00489a004.
P.P. Solanki and K.M. Gangotri, World Renewable Energy Congress, Linkoping, Sweden, 8-11 May, pp. 2807-2814 (2011).
P. Koli, Arab. J. Chem., 10, 1077 (2017); https://doi.org/10.1016/j.arabjc.2014.11.061.
S.A. Mahmoud and B.S. Mohamed, Int. J. Electrochem. Sci., 10, 3340 (2015).
K.K. Rohatgi-Mukherjee, M. Bagchi and B.B. Bhowmik, Indian J. Chem., 24A, 1002 (1985).