Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Salinity Effect on Adsorption of Phenol by Activated Carbon from Sugarcane Bagasse
Corresponding Author(s) : Nguyen Dinh Chien
Asian Journal of Chemistry,
Vol. 32 No. 2 (2020): Vol 32 Issue 2
Abstract
Activated carbon was obtained from sugarcane bagasse was studied and comparing with commercial activated carbon from coconut shell. Porosity parameters of the samples were calculated by low temperature nitrogen adsorption by using some theories. Adsorption of phenol on sample was studied in comparing with commercial activated carbon. Effect of salinity on phenol adsorption was studied by assessment effectivity of phenol removal from aqueous solution. It has been shown that the presence of sodium chloride in solution can increase adsorption of phenol by activated carbon.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.C. Rabelo, H. Carrere, R. Maciel Filho and A.C. Costa, Bioresour. Technol., 102, 7887 (2011); https://doi.org/10.1016/j.biortech.2011.05.081.
- Y.R. Loh, D. Sujan, M.E. Rahman and C.A. Das, Res. Conserv. Recycl., 75, 14 (2013); https://doi.org/10.1016/j.resconrec.2013.03.002.
- J.C. Cueva-Orjuela, A. Hormaza-Anaguano and A. Merino-Restrepo, DYNA, 84, 291 (2017); https://doi.org/10.15446/dyna.v84n203.61723.
- N.K. Amin, Desalination, 223, 152 (2008); https://doi.org/10.1016/j.desal.2007.01.203.
- H. Tajernia, T. Ebadi, B. Nasernejad and M. Ghafori, Water Air Soil Pollut., 225, 2028 (2014); https://doi.org/10.1007/s11270-014-2028-4.
- L.R. Martins, J.A.V. Rodrigues, O.F.H. Adarme, T.M.S. Melo, L.V.A. Gurgel and L.F. Gil, J. Colloid Interface Sci., 494, 223 (2017); https://doi.org/10.1016/j.jcis.2017.01.085.
- O. Joseph, M. Rouez, H. Métivier-Pignon, R. Bayard, E. Emmanuel and R. Gourdon, Environ. Technol., 30, 1371 (2009); https://doi.org/10.1080/09593330903139520.
- S.N.C. Ramos, A.L.P. Xavier, F.S. Teodoro, L.F. Gil and L.V.A. Gurgel, Ind. Crops Prod., 79, 116 (2016); https://doi.org/10.1016/j.indcrop.2015.10.035.
- L. Divband Hafshejani, A. Hooshmand, A.A. Naseri, A.S. Mohammadi, F. Abbasi and A. Bhatnagar, Ecol. Eng., 95, 101 (2016); https://doi.org/10.1016/j.ecoleng.2016.06.035.
- A. Dabrowski, P. Podkoscielny, Z. Hubicki and M. Barczak, Chemosphere, 58, 1049 (2005); https://doi.org/10.1016/j.chemosphere.2004.09.067.
- L.G.C. Villegas, N. Mashhadi, M. Chen, D. Mukherjee, K.E. Taylor and N. Biswas, Curr. Pollut. Rep., 2, 157 (2016); https://doi.org/10.1007/s40726-016-0035-3.
- D.K. Singh and B. Srivastava, J. Sci. Ind. Res., 61, 208 (2012).
- C.R. Girish and V.R. Murty, J. Environ. Sci. Eng., 54, 306 (2012).
- N.D. Mu’azu, N. Jarrah, M. Zubair and O. Alagha, Int. J. Environ. Res. Public Health, 14, 1094 (2017); https://doi.org/10.3390/ijerph14101094.
- B.H. Hameed and A.A. Rahman, J. Hazard. Mater., 160, 576 (2008); https://doi.org/10.1016/j.jhazmat.2008.03.028.
- S.-H. Lin and R.-S. Juang, J. Environ. Manag., 90, 1336 (2009); https://doi.org/10.1016/j.jenvman.2008.09.003.
References
S.C. Rabelo, H. Carrere, R. Maciel Filho and A.C. Costa, Bioresour. Technol., 102, 7887 (2011); https://doi.org/10.1016/j.biortech.2011.05.081.
Y.R. Loh, D. Sujan, M.E. Rahman and C.A. Das, Res. Conserv. Recycl., 75, 14 (2013); https://doi.org/10.1016/j.resconrec.2013.03.002.
J.C. Cueva-Orjuela, A. Hormaza-Anaguano and A. Merino-Restrepo, DYNA, 84, 291 (2017); https://doi.org/10.15446/dyna.v84n203.61723.
N.K. Amin, Desalination, 223, 152 (2008); https://doi.org/10.1016/j.desal.2007.01.203.
H. Tajernia, T. Ebadi, B. Nasernejad and M. Ghafori, Water Air Soil Pollut., 225, 2028 (2014); https://doi.org/10.1007/s11270-014-2028-4.
L.R. Martins, J.A.V. Rodrigues, O.F.H. Adarme, T.M.S. Melo, L.V.A. Gurgel and L.F. Gil, J. Colloid Interface Sci., 494, 223 (2017); https://doi.org/10.1016/j.jcis.2017.01.085.
O. Joseph, M. Rouez, H. Métivier-Pignon, R. Bayard, E. Emmanuel and R. Gourdon, Environ. Technol., 30, 1371 (2009); https://doi.org/10.1080/09593330903139520.
S.N.C. Ramos, A.L.P. Xavier, F.S. Teodoro, L.F. Gil and L.V.A. Gurgel, Ind. Crops Prod., 79, 116 (2016); https://doi.org/10.1016/j.indcrop.2015.10.035.
L. Divband Hafshejani, A. Hooshmand, A.A. Naseri, A.S. Mohammadi, F. Abbasi and A. Bhatnagar, Ecol. Eng., 95, 101 (2016); https://doi.org/10.1016/j.ecoleng.2016.06.035.
A. Dabrowski, P. Podkoscielny, Z. Hubicki and M. Barczak, Chemosphere, 58, 1049 (2005); https://doi.org/10.1016/j.chemosphere.2004.09.067.
L.G.C. Villegas, N. Mashhadi, M. Chen, D. Mukherjee, K.E. Taylor and N. Biswas, Curr. Pollut. Rep., 2, 157 (2016); https://doi.org/10.1007/s40726-016-0035-3.
D.K. Singh and B. Srivastava, J. Sci. Ind. Res., 61, 208 (2012).
C.R. Girish and V.R. Murty, J. Environ. Sci. Eng., 54, 306 (2012).
N.D. Mu’azu, N. Jarrah, M. Zubair and O. Alagha, Int. J. Environ. Res. Public Health, 14, 1094 (2017); https://doi.org/10.3390/ijerph14101094.
B.H. Hameed and A.A. Rahman, J. Hazard. Mater., 160, 576 (2008); https://doi.org/10.1016/j.jhazmat.2008.03.028.
S.-H. Lin and R.-S. Juang, J. Environ. Manag., 90, 1336 (2009); https://doi.org/10.1016/j.jenvman.2008.09.003.