Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Microwave Assisted Green Synthesis of Silver Nanoparticles using Pomegranate Peel Extract: Characterization and Antibacterial Activity Studies
Corresponding Author(s) : T.V.D. Prasad Rao
Asian Journal of Chemistry,
Vol. 32 No. 2 (2020): Vol 32 Issue 2
Abstract
In the present work, a simple and low cost and eco-friendly technique is applied for the microwave assisted synthesis of silver nanoparticles (AgNPs) using the extract of pomegranate peel wastes, which does not require any use of external stabilizing agent. The extract of pomegranates peelings waste served as a reducing as well as capping/stabilizing agent. The synthesized silver nanoparticles were characterized by using powder X-ray diffraction (XRD), transmission eelectron microscopy (TEM), FT-IR, UV-visible spectroscopy and scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX). The stability of AgNPs was analyzed by zeta potential measurements. The antibacterial activity of synthesized AgNPs was also evaluated on six Gram-positive and Gram-negative bacteria using agar well diffusion method.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Gurunathan, J.H. Park, J.W. Han and J.H. Kim, Int. J. Nanomed., 10, 4203 (2015); https://doi.org/10.2147/IJN.S83953.
- W.R. Li, X.B. Xie, Q.S. Shi, H.Y. Zeng, Y.S. Ou-Yang and Y.B. Chen, Appl. Microbiol. Biotechnol., 85, 1115 (2010); https://doi.org/10.1007/s00253-009-2159-5.
- P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Parishcha, P.V. Ajaykumar, M. Alam, R. Kumar and M. Sastry, Nano Lett., 1, 515 (2001); https://doi.org/10.1021/nl0155274.
- K.M.M. Abou El-Nour, A. Eftaiha, A. Al-Warthan and R.A.A. Ammar, Arab. J. Chem., 3, 135 (2010); https://doi.org/10.1016/j.arabjc.2010.04.008.
- M.S. Akhtar, J. Panwar and Y.S. Yun, ACS Sustain. Chem. Eng., 1, 591 (2013); https://doi.org/10.1021/sc300118u.
- B.H. Kim, M.J. Hackett, J. Park and T. Hyeon, Chem. Mater., 26, 59 (2014); https://doi.org/10.1021/cm402225z.
- S. Yeo, H. Lee and S. Jeong, J. Mater. Sci., 38, 2143 (2003); https://doi.org/10.1023/A:1023767828656.
- J. Zhang, P. Chen, C. Sun and X. Hu, J. Appl. Catal. A, 266, 49 (2004); https://doi.org/10.1016/j.apcata.2004.01.025.
- R. Chimentao, I. Kirm, F. Medina, X. Rodriguez, Y. Cesteros, P. Salagre and J. Sueiras, Chem. Commun., 4, 846 (2004); https://doi.org/10.1039/B400762J.
- B. He, J.J. Tan, K.Y. Liew and H. Liu, J. Mol. Catal. A Chem., 221, 121 (2004); https://doi.org/10.1016/j.molcata.2004.06.025.
- S. Gurunathan, K. Kalishwaralal, R. Vaidyanathan, D. Venkataraman, S.R. Pandian, J. Muniyandi, N. Hariharan and S.H. Eom, Colloids Surf. B Biointerfaces, 74, 328 (2009); https://doi.org/10.1016/j.colsurfb.2009.07.048.
- J. Sun, D. Ma, H. Zhang, X. Liu, X. Han, X. Bao, G. Weinberg, N. Pfänder and D. Su, J. Am. Chem. Soc., 128, 15756 (2006); https://doi.org/10.1021/ja064884j.
- G. Khomutov and S. Gubin, Mater. Sci. Eng. C, 22, 141 (2002); https://doi.org/10.1016/S0928-4931(02)00162-5.
- M. Oliveira, D. Ugarte, D. Zanchet and A. Zarbin, J. Colloid Interface Sci., 292, 429 (2005); https://doi.org/10.1016/j.jcis.2005.05.068.
- E. Egorova and A. Revina, Colloids Surf. A Physicochem. Eng. Asp., 168, 87 (2000); https://doi.org/10.1016/S0927-7757(99)00513-0.
- M. Pileni, Langmuir, 13, 3266 (1997); https://doi.org/10.1021/la960319q.
- C. Petit, P. Lixon and M.P. Pileni, J. Phys. Chem., 97, 12974 (1993); https://doi.org/10.1021/j100151a054.
- I. Lisiecki and M. Pileni, J. Phys. Chem., 99, 5077 (1995); https://doi.org/10.1021/j100014a030.
- A. Dokuchaev, T. Myasoedova and A. Revina, Chem. High Energies, 31, 353 (1997).
- G.B. Reddy, A. Madhusudhan, D. Ramakrishna, D. Ayodhya, M. Venkatesham and G. Veerabhadram, J. Nanostruc. Chem., 5, 185 (2015); https://doi.org/10.1007/s40097-015-0149-y.
- A. Panácek, M. Kolár, R. Vecerová, R. Prucek, J. Soukupová, V. Krystof, P. Hamal, R. Zboril and L. Kvítek, Biomaterials, 30, 6333 (2009); https://doi.org/10.1016/j.biomaterials.2009.07.065.
- K. Zodrow, L. Brunet, S. Mahendra, D. Li, A. Zhang, Q. Li and P.J. Alvarez, Water Res., 43, 715 (2009); https://doi.org/10.1016/j.watres.2008.11.014.
- K.K. Wong, S.O. Cheung, L. Huang, J. Niu, C. Tao, C.M. Ho, C.M. Che and P.K. Tam, ChemMedChem, 4, 1129 (2009); https://doi.org/10.1002/cmdc.200900049.
- S. Gurunathan, K.J. Lee, K. Kalishwaralal, S. Sheikpranbabu, R. Vaidyanathan and S.H. Eom, Biomaterials, 30, 6341 (2009); https://doi.org/10.1016/j.biomaterials.2009.08.008.
- M.I. Sriram, S.B.M. Kanth, K. Kalishwaralal and S. Gurunathan, Int. J. Nanomed., 5, 753 (2010); https://doi.org/10.2147/IJN.S11727.
- T. Verano-Braga, R. Miethling-Graff, K. Wojdyla, A. RogowskaWrzesinska, J.R. Brewer, H. Erdmann and F. Kjeldsen, ACS Nano, 8, 2161 (2014); https://doi.org/10.1021/nn4050744.
- D. Botequim, J. Maia, M.M.F. Lino, L.M.F. Lopes, P.N. Simões, L.M. Ilharco and L. Ferreira, Langmuir, 28, 7646 (2012); https://doi.org/10.1021/la300948n.
- C.Y. Li, Y.J. Zhang, M. Wang, Y. Zhang, G. Chen, L. Li, D. Wu and Q. Wang, Biomaterials, 35, 393 (2014); https://doi.org/10.1016/j.biomaterials.2013.10.010.
- M. Nasiriboroumand, M. Montazer and H. Barani, J. Photochem. Photobiol. B, 179, 98 (2018); https://doi.org/10.1016/j.jphotobiol.2018.01.006.
- T.R. Lakshmeesha, M.K. Sateesh, B.D. Prasad, S.C. Sharma, M. Kavyashree, M. Chandrasekhar and H. Nagabhushana, Cryst. Growth Des., 14, 4068 (2014); https://doi.org/10.1021/cg500699z.
- V.V. Makarov, A.J. Love, O.V. Sinitsyna, S.S.I.V. Makarova, M.E. Yaminsky, Taliansky and N.O. Kalinina, Acta Naturae, 6, 35 (2014); https://doi.org/10.32607/20758251-2014-6-1-35-44.
- B.R. Gangapuram, R. Bandi, M. Alle, R. Dadigala, G.M. Kotu and Guttena, J. Mol. Struct., 1167, 305 (2018); https://doi.org/10.1016/j.molstruc.2018.05.004.
- S. Rajput, R. Werezuk, R.M. Lange and M.T. Mcdermott, Langmuir, 32, 8688 (2016); https://doi.org/10.1021/acs.langmuir.6b01813.
References
S. Gurunathan, J.H. Park, J.W. Han and J.H. Kim, Int. J. Nanomed., 10, 4203 (2015); https://doi.org/10.2147/IJN.S83953.
W.R. Li, X.B. Xie, Q.S. Shi, H.Y. Zeng, Y.S. Ou-Yang and Y.B. Chen, Appl. Microbiol. Biotechnol., 85, 1115 (2010); https://doi.org/10.1007/s00253-009-2159-5.
P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Parishcha, P.V. Ajaykumar, M. Alam, R. Kumar and M. Sastry, Nano Lett., 1, 515 (2001); https://doi.org/10.1021/nl0155274.
K.M.M. Abou El-Nour, A. Eftaiha, A. Al-Warthan and R.A.A. Ammar, Arab. J. Chem., 3, 135 (2010); https://doi.org/10.1016/j.arabjc.2010.04.008.
M.S. Akhtar, J. Panwar and Y.S. Yun, ACS Sustain. Chem. Eng., 1, 591 (2013); https://doi.org/10.1021/sc300118u.
B.H. Kim, M.J. Hackett, J. Park and T. Hyeon, Chem. Mater., 26, 59 (2014); https://doi.org/10.1021/cm402225z.
S. Yeo, H. Lee and S. Jeong, J. Mater. Sci., 38, 2143 (2003); https://doi.org/10.1023/A:1023767828656.
J. Zhang, P. Chen, C. Sun and X. Hu, J. Appl. Catal. A, 266, 49 (2004); https://doi.org/10.1016/j.apcata.2004.01.025.
R. Chimentao, I. Kirm, F. Medina, X. Rodriguez, Y. Cesteros, P. Salagre and J. Sueiras, Chem. Commun., 4, 846 (2004); https://doi.org/10.1039/B400762J.
B. He, J.J. Tan, K.Y. Liew and H. Liu, J. Mol. Catal. A Chem., 221, 121 (2004); https://doi.org/10.1016/j.molcata.2004.06.025.
S. Gurunathan, K. Kalishwaralal, R. Vaidyanathan, D. Venkataraman, S.R. Pandian, J. Muniyandi, N. Hariharan and S.H. Eom, Colloids Surf. B Biointerfaces, 74, 328 (2009); https://doi.org/10.1016/j.colsurfb.2009.07.048.
J. Sun, D. Ma, H. Zhang, X. Liu, X. Han, X. Bao, G. Weinberg, N. Pfänder and D. Su, J. Am. Chem. Soc., 128, 15756 (2006); https://doi.org/10.1021/ja064884j.
G. Khomutov and S. Gubin, Mater. Sci. Eng. C, 22, 141 (2002); https://doi.org/10.1016/S0928-4931(02)00162-5.
M. Oliveira, D. Ugarte, D. Zanchet and A. Zarbin, J. Colloid Interface Sci., 292, 429 (2005); https://doi.org/10.1016/j.jcis.2005.05.068.
E. Egorova and A. Revina, Colloids Surf. A Physicochem. Eng. Asp., 168, 87 (2000); https://doi.org/10.1016/S0927-7757(99)00513-0.
M. Pileni, Langmuir, 13, 3266 (1997); https://doi.org/10.1021/la960319q.
C. Petit, P. Lixon and M.P. Pileni, J. Phys. Chem., 97, 12974 (1993); https://doi.org/10.1021/j100151a054.
I. Lisiecki and M. Pileni, J. Phys. Chem., 99, 5077 (1995); https://doi.org/10.1021/j100014a030.
A. Dokuchaev, T. Myasoedova and A. Revina, Chem. High Energies, 31, 353 (1997).
G.B. Reddy, A. Madhusudhan, D. Ramakrishna, D. Ayodhya, M. Venkatesham and G. Veerabhadram, J. Nanostruc. Chem., 5, 185 (2015); https://doi.org/10.1007/s40097-015-0149-y.
A. Panácek, M. Kolár, R. Vecerová, R. Prucek, J. Soukupová, V. Krystof, P. Hamal, R. Zboril and L. Kvítek, Biomaterials, 30, 6333 (2009); https://doi.org/10.1016/j.biomaterials.2009.07.065.
K. Zodrow, L. Brunet, S. Mahendra, D. Li, A. Zhang, Q. Li and P.J. Alvarez, Water Res., 43, 715 (2009); https://doi.org/10.1016/j.watres.2008.11.014.
K.K. Wong, S.O. Cheung, L. Huang, J. Niu, C. Tao, C.M. Ho, C.M. Che and P.K. Tam, ChemMedChem, 4, 1129 (2009); https://doi.org/10.1002/cmdc.200900049.
S. Gurunathan, K.J. Lee, K. Kalishwaralal, S. Sheikpranbabu, R. Vaidyanathan and S.H. Eom, Biomaterials, 30, 6341 (2009); https://doi.org/10.1016/j.biomaterials.2009.08.008.
M.I. Sriram, S.B.M. Kanth, K. Kalishwaralal and S. Gurunathan, Int. J. Nanomed., 5, 753 (2010); https://doi.org/10.2147/IJN.S11727.
T. Verano-Braga, R. Miethling-Graff, K. Wojdyla, A. RogowskaWrzesinska, J.R. Brewer, H. Erdmann and F. Kjeldsen, ACS Nano, 8, 2161 (2014); https://doi.org/10.1021/nn4050744.
D. Botequim, J. Maia, M.M.F. Lino, L.M.F. Lopes, P.N. Simões, L.M. Ilharco and L. Ferreira, Langmuir, 28, 7646 (2012); https://doi.org/10.1021/la300948n.
C.Y. Li, Y.J. Zhang, M. Wang, Y. Zhang, G. Chen, L. Li, D. Wu and Q. Wang, Biomaterials, 35, 393 (2014); https://doi.org/10.1016/j.biomaterials.2013.10.010.
M. Nasiriboroumand, M. Montazer and H. Barani, J. Photochem. Photobiol. B, 179, 98 (2018); https://doi.org/10.1016/j.jphotobiol.2018.01.006.
T.R. Lakshmeesha, M.K. Sateesh, B.D. Prasad, S.C. Sharma, M. Kavyashree, M. Chandrasekhar and H. Nagabhushana, Cryst. Growth Des., 14, 4068 (2014); https://doi.org/10.1021/cg500699z.
V.V. Makarov, A.J. Love, O.V. Sinitsyna, S.S.I.V. Makarova, M.E. Yaminsky, Taliansky and N.O. Kalinina, Acta Naturae, 6, 35 (2014); https://doi.org/10.32607/20758251-2014-6-1-35-44.
B.R. Gangapuram, R. Bandi, M. Alle, R. Dadigala, G.M. Kotu and Guttena, J. Mol. Struct., 1167, 305 (2018); https://doi.org/10.1016/j.molstruc.2018.05.004.
S. Rajput, R. Werezuk, R.M. Lange and M.T. Mcdermott, Langmuir, 32, 8688 (2016); https://doi.org/10.1021/acs.langmuir.6b01813.