Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Biological Evolution of Titanium(IV) Complex [{(NNO)2Ti}3O3] Bearing Bidentate Heteroditopic Schiff Base Ligand: Synthesis, Structure and Biological Studies
Corresponding Author(s) : Ravi K. Kottalanka
Asian Journal of Chemistry,
Vol. 32 No. 2 (2020): Vol 32 Issue 2
Abstract
Titanium(IV)-complex of chemical composition [{(NNO)2Ti}3O3] (2) bearing bidentate heteroditopic Schiff base [(C5H4OH)-N=CH-C4H3-NH] (L1) ligand in titanium coordination sphere was reported and its biological significance was evaluated. The in vitro cytotoxicity of L1 and 2 were evaluated by using MTT assay on cancer cell lines (MCF-7 & A549) and observed significant cytotoxicity. Further, the LDH and NO assay studies on both L1 and 2 on cancer cell lines revealed that the enhanced cytotoxicity compared to standard anticancer drug i.e. cisplatin. The DNA binding studies of tested compounds with Ct-DNA molecule by using UV-visible and fluorescence spectra and molecular docking studies revealed that moderate to good binding interactions with test molecules. Thus, the present work contributes and implies the biological significance of Ti-complex (2) and the correlation between the structure and the biological activities of such Ti-complexes supported by Schiff base systems opens up opportunities for further exploitation of similar biologically active titanium systems.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Ganot, O. Briaitbard, A. Gammal, J. Tam, J. Hochman and Y.E. Tshuva, ChemMedChem, 13, 2290 (2018); https://doi.org/10.1002/cmdc.201800551.
- R.S.S. Azevedo, J.R. de Sousa, M.T.F. Araujo, A.J. Martins Filho, B.N. de Alcantara, F.M.C. Araujo, M.G.L. Queiroz, A.C.R. Cruz, B.H.B. Vasconcelos, J.O. Chiang, L.C. Martins, L.M.N. Casseb, E.V. da Silva, V.L. Carvalho, B.C.B. Vasconcelos, S.G. Rodrigues, C.S. Oliveira, J.A.S. Quaresma and P.F.C. Vasconcelos, Sci. Rep., 8, 1 (2018); https://doi.org/10.1038/s41598-017-17765-5.
- I. Ott and R. Gust, Arch. Pharm., 340, 117 (2007).
- M. Tacke, L.T. Allen, L. Cuffe, W.M. Gallagher, Y. Lou, O. Mendoza, H. Müller-Bunz, F.-J.K. Rehmann and N. Sweeney, J. Organomet. Chem., 689, 2242 (2004); https://doi.org/10.1016/j.jorganchem.2004.04.015.
- R. Kaushal, N. Kumar, A. Chaudhary, S. Arora and P. Awasthi, Bioinorg. Chem. Appl., 2014, Article ID, 1428281 (2014); https://doi.org/10.1155/2014/142828.
- P.M. Abeysinghe and M.M. Harding, Dalton Trans., 3474 (2007); https://doi.org/10.1039/b707440a.
- F. Caruso, M. Rossi and C. Pettinari, Expert Opin. Ther. Pat., 11, 969 (2001); https://doi.org/10.1517/13543776.11.6.969.
- J. Bhattacharjee, S. Das, R.K. Kottalanka and T.K. Panda, Dalton Trans., 45, 17824 (2016); https://doi.org/10.1039/C6DT03063G.
- F. Caruso and M. Rossi, Met. Ions Biol. Syst., 42, 353 (2004).
- B.K. Keppler, C. Friesen, H.G. Moritz, H. Vongerichten and E. Vogel, Bioinorganic Chemistry, Springer; Berlin Heidelberg, Berlin, Heidelberg, vol. 78. pp. 97–127 (1991).
- E.Y. Tshuva and J.A. Ashenhurst, Eur. J. Inorg. Chem., 2195 (2009); https://doi.org/10.1002/ejic.200990038.
- E.Y. Tshuva and D. Peri, Coord. Chem. Rev., 253, 2098 (2009); https://doi.org/10.1016/j.ccr.2008.11.015.
- I. Kostova, Anti-Cancer Agents, 9, 827 (2009); https://doi.org/10.2174/187152009789124646.
- E. Meléndez, Crit. Rev. Oncol. Hematol., 42, 309 (2002); https://doi.org/10.1016/S1040-8428(01)00224-4.
- S.A. Loza-Rosas, M. Saxena, Y. Delgado, K. Gaur, M. Pandrala and A.D. Tinoco, Metallomics, 9, 346 (2017); https://doi.org/10.1039/C6MT00223D.
- J.-Y. Chung, Y.S. Werner and R. Thiel, J. Organomet. Chem., 829, 31 (2017); https://doi.org/10.1016/j.jorganchem.2016.10.035.
- E.Y. Tshuva and M. Miller, Coordination Complexes of Titanium(IV) for Anticancer Therapy, In: Metal Ions in Life Sciences, Walter de Gruyter GmbH & Co KG, vol. 18, p. 219-249 (2018).
- K.M. Buettner and A.M. Valentine, Chem. Rev., 112, 1863 (2012); https://doi.org/10.1021/cr1002886.
- K. Strohfeldt and M. Tacke, Chem. Soc. Rev., 37, 1174 (2008); https://doi.org/10.1039/b707310k.
- P. Koepf-Maier and H. Koepf, Chem. Rev., 87, 1137 (1987); https://doi.org/10.1021/cr00081a012.
- J.H. Toney and T.J. Marks, J. Am. Chem. Soc., 107, 947 (1985); https://doi.org/10.1021/ja00290a033.
- F. Caruso, L. Massa, A. Gindulyte, C. Pettinari, F. Marchetti, R. Pettinari, M. Ricciutelli, J. Costamagna, J.C. Canales, J. Tanski and M. Rossi, Eur. J. Inorg. Chem., 2003, 3221 (2003); https://doi.org/10.1002/ejic.200300135.
- M. Cini, T.D. Bradshaw and S. Woodward, Chem. Soc. Rev., 46, 1040 (2017); https://doi.org/10.1039/C6CS00860G.
- M. Shavit, D. Peri, C.M. Manna, J.S. Alexander and E.Y. Tshuva, J. Am. Chem. Soc., 129, 12098 (2007); https://doi.org/10.1021/ja0753086.
- D. Peri, S. Meker, M. Shavit and E.Y. Tshuva, Chem. Eur. J., 15, 2403 (2009); https://doi.org/10.1002/chem.200801310.
- D. Peri, S. Meker, C.M. Manna and E.Y. Tshuva, Inorg. Chem., 50, 1030 (2011); https://doi.org/10.1021/ic101693v.
- C.M. Manna, O. Braitbard, E. Weiss, J. Hochman and E.Y. Tshuva, ChemMedChem, 7, 703 (2012); https://doi.org/10.1002/cmdc.201100593.
- T.A. Immel, U. Groth, T. Huhn and P. Öhlschläger, PLoS One, 6, 17869 (2011); https://doi.org/10.1371/journal.pone.0017869.
- T.A. Immel, U. Groth and T. Huhn, Chem. Eur. J., 16, 2775 (2010); https://doi.org/10.1002/chem.200902312.
- M. Miller, O. Braitbard, J. Hochman and E.Y. Tshuva, J. Inorg. Biochem., 163, 250 (2016); https://doi.org/10.1016/j.jinorgbio.2016.04.007.
- S.L. Hancock, R. Gati, M.F. Mahon, E.Y. Tshuva and M.D. Jones, Dalton Trans., 43, 1380 (2014); https://doi.org/10.1039/C3DT52583J.
- S. Meker, C.M. Manna, D. Peri and E.Y. Tshuva, Dalton Trans., 40, 9802 (2011); https://doi.org/10.1039/c1dt11108f.
- H. Glasner and E.Y. Tshuva, J. Am. Chem. Soc., 133, 16812 (2011); https://doi.org/10.1021/ja208219f.
References
N. Ganot, O. Briaitbard, A. Gammal, J. Tam, J. Hochman and Y.E. Tshuva, ChemMedChem, 13, 2290 (2018); https://doi.org/10.1002/cmdc.201800551.
R.S.S. Azevedo, J.R. de Sousa, M.T.F. Araujo, A.J. Martins Filho, B.N. de Alcantara, F.M.C. Araujo, M.G.L. Queiroz, A.C.R. Cruz, B.H.B. Vasconcelos, J.O. Chiang, L.C. Martins, L.M.N. Casseb, E.V. da Silva, V.L. Carvalho, B.C.B. Vasconcelos, S.G. Rodrigues, C.S. Oliveira, J.A.S. Quaresma and P.F.C. Vasconcelos, Sci. Rep., 8, 1 (2018); https://doi.org/10.1038/s41598-017-17765-5.
I. Ott and R. Gust, Arch. Pharm., 340, 117 (2007).
M. Tacke, L.T. Allen, L. Cuffe, W.M. Gallagher, Y. Lou, O. Mendoza, H. Müller-Bunz, F.-J.K. Rehmann and N. Sweeney, J. Organomet. Chem., 689, 2242 (2004); https://doi.org/10.1016/j.jorganchem.2004.04.015.
R. Kaushal, N. Kumar, A. Chaudhary, S. Arora and P. Awasthi, Bioinorg. Chem. Appl., 2014, Article ID, 1428281 (2014); https://doi.org/10.1155/2014/142828.
P.M. Abeysinghe and M.M. Harding, Dalton Trans., 3474 (2007); https://doi.org/10.1039/b707440a.
F. Caruso, M. Rossi and C. Pettinari, Expert Opin. Ther. Pat., 11, 969 (2001); https://doi.org/10.1517/13543776.11.6.969.
J. Bhattacharjee, S. Das, R.K. Kottalanka and T.K. Panda, Dalton Trans., 45, 17824 (2016); https://doi.org/10.1039/C6DT03063G.
F. Caruso and M. Rossi, Met. Ions Biol. Syst., 42, 353 (2004).
B.K. Keppler, C. Friesen, H.G. Moritz, H. Vongerichten and E. Vogel, Bioinorganic Chemistry, Springer; Berlin Heidelberg, Berlin, Heidelberg, vol. 78. pp. 97–127 (1991).
E.Y. Tshuva and J.A. Ashenhurst, Eur. J. Inorg. Chem., 2195 (2009); https://doi.org/10.1002/ejic.200990038.
E.Y. Tshuva and D. Peri, Coord. Chem. Rev., 253, 2098 (2009); https://doi.org/10.1016/j.ccr.2008.11.015.
I. Kostova, Anti-Cancer Agents, 9, 827 (2009); https://doi.org/10.2174/187152009789124646.
E. Meléndez, Crit. Rev. Oncol. Hematol., 42, 309 (2002); https://doi.org/10.1016/S1040-8428(01)00224-4.
S.A. Loza-Rosas, M. Saxena, Y. Delgado, K. Gaur, M. Pandrala and A.D. Tinoco, Metallomics, 9, 346 (2017); https://doi.org/10.1039/C6MT00223D.
J.-Y. Chung, Y.S. Werner and R. Thiel, J. Organomet. Chem., 829, 31 (2017); https://doi.org/10.1016/j.jorganchem.2016.10.035.
E.Y. Tshuva and M. Miller, Coordination Complexes of Titanium(IV) for Anticancer Therapy, In: Metal Ions in Life Sciences, Walter de Gruyter GmbH & Co KG, vol. 18, p. 219-249 (2018).
K.M. Buettner and A.M. Valentine, Chem. Rev., 112, 1863 (2012); https://doi.org/10.1021/cr1002886.
K. Strohfeldt and M. Tacke, Chem. Soc. Rev., 37, 1174 (2008); https://doi.org/10.1039/b707310k.
P. Koepf-Maier and H. Koepf, Chem. Rev., 87, 1137 (1987); https://doi.org/10.1021/cr00081a012.
J.H. Toney and T.J. Marks, J. Am. Chem. Soc., 107, 947 (1985); https://doi.org/10.1021/ja00290a033.
F. Caruso, L. Massa, A. Gindulyte, C. Pettinari, F. Marchetti, R. Pettinari, M. Ricciutelli, J. Costamagna, J.C. Canales, J. Tanski and M. Rossi, Eur. J. Inorg. Chem., 2003, 3221 (2003); https://doi.org/10.1002/ejic.200300135.
M. Cini, T.D. Bradshaw and S. Woodward, Chem. Soc. Rev., 46, 1040 (2017); https://doi.org/10.1039/C6CS00860G.
M. Shavit, D. Peri, C.M. Manna, J.S. Alexander and E.Y. Tshuva, J. Am. Chem. Soc., 129, 12098 (2007); https://doi.org/10.1021/ja0753086.
D. Peri, S. Meker, M. Shavit and E.Y. Tshuva, Chem. Eur. J., 15, 2403 (2009); https://doi.org/10.1002/chem.200801310.
D. Peri, S. Meker, C.M. Manna and E.Y. Tshuva, Inorg. Chem., 50, 1030 (2011); https://doi.org/10.1021/ic101693v.
C.M. Manna, O. Braitbard, E. Weiss, J. Hochman and E.Y. Tshuva, ChemMedChem, 7, 703 (2012); https://doi.org/10.1002/cmdc.201100593.
T.A. Immel, U. Groth, T. Huhn and P. Öhlschläger, PLoS One, 6, 17869 (2011); https://doi.org/10.1371/journal.pone.0017869.
T.A. Immel, U. Groth and T. Huhn, Chem. Eur. J., 16, 2775 (2010); https://doi.org/10.1002/chem.200902312.
M. Miller, O. Braitbard, J. Hochman and E.Y. Tshuva, J. Inorg. Biochem., 163, 250 (2016); https://doi.org/10.1016/j.jinorgbio.2016.04.007.
S.L. Hancock, R. Gati, M.F. Mahon, E.Y. Tshuva and M.D. Jones, Dalton Trans., 43, 1380 (2014); https://doi.org/10.1039/C3DT52583J.
S. Meker, C.M. Manna, D. Peri and E.Y. Tshuva, Dalton Trans., 40, 9802 (2011); https://doi.org/10.1039/c1dt11108f.
H. Glasner and E.Y. Tshuva, J. Am. Chem. Soc., 133, 16812 (2011); https://doi.org/10.1021/ja208219f.