Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
A New Organic Dye Cordia sebestena Sensitized Solar Cell with Current-Voltage Characteristics
Corresponding Author(s) : M. Kowsalya
Asian Journal of Chemistry,
Vol. 32 No. 2 (2020): Vol 32 Issue 2
Abstract
Titanium dioxide nanoparticles have been synthesized by a novel modified sol-gel for the fabrication of natural dye sensitized solar cells. The natural photo sensitizer extracted from Cordia sebestena flower was mixed with the precursor solution. The flower dye has put the effort of a surfactant which has resulted colourized TiO2 instead of white TiO2. Whencompared to the conventional sol-gel method, this modified process has enhanced the properties of TiO2 like, morphology, uniformity in dye absorption. It has reduced the agglomeration of TiO2 and dye aggregation significantly. The optimized molecular geometry of sebestenoid D, the major pigment of Cordia sebestena and HOMO-LUMO plot are found using density functional theory. The TiO2 nanoparticles were subjected to structural, optical, spectral and morphological studies which showed improved properties in modified sol-gel process. Ecofriendly and low-cost natural dye sensitized solar cells (DSSC) were fabricated using conventional and pre-dye treated TiO2 sensitized by Cordia sebestena flower extract. The I-V studies showed the solar light photon to electron conversion efficiencies of 0.87 and 1.28 % for sol-gel and modified sol-gel methods, respectively. There has been an enhancement in efficiency by 47 % in modified sol-gel method which is very much promising in terms of efficiency for natural dye sensitized solar cells.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Kalyanasundaram and M. Graetzel, Coord. Chem. Rev., 177, 347 (1998); https://doi.org/10.1016/S0010-8545(98)00189-1.
- M. Grätzel, J. Photochem. Photobiol. Photochem. Rev., 4, 145 (2003); https://doi.org/10.1016/S1389-5567(03)00026-1.
- M.H. Abdi, N.B. Ibrahim, H. Baqiah and S.A. Halim, Sci. Iran., 21, 2459 (2014).
- Y. Vahidshad, R. Ghasemzadeh, A.I. Zad, S.M. Mirkazemi and A. Masoud, Sci. Iran., 21, 2468 (2014).
- P. Vijayakumar, R. Govindaraj, N. Santhosh, M.S. Pandian, A. Pandikumar and P. Ramasamy, J. Mater. Sci., 53, 4444 (2018); https://doi.org/10.1007/s10853-017-1843-6.
- L. Khatua, R. Panda, R. Govindraj, N. Santhosh, M.S. Pandian, P. Satapathy, P. Ramasamy and S.K. Das, AIP Conf. Proc., 1953, 030101 (2018); https://doi.org/10.1063/1.5032436.
- S. Hussain, S.A. Patil, D. Vikraman, N. Mengal, H. Liu, W. Song, K.S. An, S.H. Jeong, H.S. Kim and J. Jung, Sci. Rep., 8, 29 (2018); https://doi.org/10.1038/s41598-017-18067-6.
- V. Paranthaman, K. Sundaramoorthy, B. Chandra, S.P. Muthu, P. Alagarsamy and R. Perumalsamy, Phys. Status Solidi., A Appl. Mater. Sci., 215, 1800298 (2018); https://doi.org/10.1002/pssa.201800298.
- Y. Wang, G. Chen, Q. Shen, F. Zhang and G. Chen, Mater. Lett., 116, 27 (2014); https://doi.org/10.1016/j.matlet.2013.10.097.
- S. Ananth, P. Vivek, T. Solaiyammal and P. Murugakoothan, Optik, 126, 1027 (2015); https://doi.org/10.1016/j.ijleo.2015.02.066.
- R. Elangovan and P. Venkatachalam, J. Inorg. Organomet. Polym. Mater., 25, 823 (2015); https://doi.org/10.1007/s10904-015-0165-x.
- G. Yue, X. Ma, W. Zhang, F. Li, J. Wu and G. Li, Nanoscale Res. Lett.,10, 1 (2015); https://doi.org/10.1186/1556-276X-10-1
- K. Susmitha, M.N. Kumar, M. Gurulakshmi, L. Giribabu and M. Raghavender, Sustain. Energy Fuels, 1, 439 (2017); https://doi.org/10.1039/C7SE00046D.
- J. Tang, S. Qu, J. Hu, W. Wu and J. Hua, Sol. Energy, 86, 2306 (2012); https://doi.org/10.1016/j.solener.2012.05.003.
- B.D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley: London, p. 99 (1978).
- G. Calogero and G.D. Marco, Sol. Energy Mater. Sol. Cells, 92, 1341 (2008); https://doi.org/10.1016/j.solmat.2008.05.007.
- C. Suwanchawalit and S. Wongnawa, J. Nanopart. Res., 12, 2895 (2010); https://doi.org/10.1007/s11051-010-9880-y.
- C. Kormann, D.W. Bahnemann and M.R. Hoffmann, J. Phys. Chem., 92, 5196 (1988); https://doi.org/10.1021/j100329a027.
- K.M. Reddy, S.V. Manorama and A.R. Reddy, Mater. Chem. Phys., 78, 239 (2002); https://doi.org/10.1016/S0254-0584(02)00343-7.
- K.F. Moustafa, M. Rekaby, E.T. El Shenawy and N.M. Khattab, J. Appl. Sci. Res., 8, 4393 (2012).
- C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev and A.J. Austin, R. Cammi C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision A.1, Gaussian Inc., Pittsburgh PA (2003).
- N. Mir and M. Salavati-Niasari, Sol. Energy, 86, 3397 (2012); https://doi.org/10.1016/j.solener.2012.08.016.
- T. Lopez, R. Gomez, E. Sanchez, F. Tzompantzi and L. Vera, J. SolGel Sci. Technol., 22, 99 (2001); https://doi.org/10.1023/A:1011272521955.
- R. Gaba, M. Bhandari and R. Kakkar, Adv. Mater. Lett., 4, 769 (2013); https://doi.org/10.5185/amlett.2013.2424.
- H. Chang and Y.-L. Lo, Solar Energy, 84, 1833 (2010); https://doi.org/10.1016/j.solener.2010.07.009.
References
K. Kalyanasundaram and M. Graetzel, Coord. Chem. Rev., 177, 347 (1998); https://doi.org/10.1016/S0010-8545(98)00189-1.
M. Grätzel, J. Photochem. Photobiol. Photochem. Rev., 4, 145 (2003); https://doi.org/10.1016/S1389-5567(03)00026-1.
M.H. Abdi, N.B. Ibrahim, H. Baqiah and S.A. Halim, Sci. Iran., 21, 2459 (2014).
Y. Vahidshad, R. Ghasemzadeh, A.I. Zad, S.M. Mirkazemi and A. Masoud, Sci. Iran., 21, 2468 (2014).
P. Vijayakumar, R. Govindaraj, N. Santhosh, M.S. Pandian, A. Pandikumar and P. Ramasamy, J. Mater. Sci., 53, 4444 (2018); https://doi.org/10.1007/s10853-017-1843-6.
L. Khatua, R. Panda, R. Govindraj, N. Santhosh, M.S. Pandian, P. Satapathy, P. Ramasamy and S.K. Das, AIP Conf. Proc., 1953, 030101 (2018); https://doi.org/10.1063/1.5032436.
S. Hussain, S.A. Patil, D. Vikraman, N. Mengal, H. Liu, W. Song, K.S. An, S.H. Jeong, H.S. Kim and J. Jung, Sci. Rep., 8, 29 (2018); https://doi.org/10.1038/s41598-017-18067-6.
V. Paranthaman, K. Sundaramoorthy, B. Chandra, S.P. Muthu, P. Alagarsamy and R. Perumalsamy, Phys. Status Solidi., A Appl. Mater. Sci., 215, 1800298 (2018); https://doi.org/10.1002/pssa.201800298.
Y. Wang, G. Chen, Q. Shen, F. Zhang and G. Chen, Mater. Lett., 116, 27 (2014); https://doi.org/10.1016/j.matlet.2013.10.097.
S. Ananth, P. Vivek, T. Solaiyammal and P. Murugakoothan, Optik, 126, 1027 (2015); https://doi.org/10.1016/j.ijleo.2015.02.066.
R. Elangovan and P. Venkatachalam, J. Inorg. Organomet. Polym. Mater., 25, 823 (2015); https://doi.org/10.1007/s10904-015-0165-x.
G. Yue, X. Ma, W. Zhang, F. Li, J. Wu and G. Li, Nanoscale Res. Lett.,10, 1 (2015); https://doi.org/10.1186/1556-276X-10-1
K. Susmitha, M.N. Kumar, M. Gurulakshmi, L. Giribabu and M. Raghavender, Sustain. Energy Fuels, 1, 439 (2017); https://doi.org/10.1039/C7SE00046D.
J. Tang, S. Qu, J. Hu, W. Wu and J. Hua, Sol. Energy, 86, 2306 (2012); https://doi.org/10.1016/j.solener.2012.05.003.
B.D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley: London, p. 99 (1978).
G. Calogero and G.D. Marco, Sol. Energy Mater. Sol. Cells, 92, 1341 (2008); https://doi.org/10.1016/j.solmat.2008.05.007.
C. Suwanchawalit and S. Wongnawa, J. Nanopart. Res., 12, 2895 (2010); https://doi.org/10.1007/s11051-010-9880-y.
C. Kormann, D.W. Bahnemann and M.R. Hoffmann, J. Phys. Chem., 92, 5196 (1988); https://doi.org/10.1021/j100329a027.
K.M. Reddy, S.V. Manorama and A.R. Reddy, Mater. Chem. Phys., 78, 239 (2002); https://doi.org/10.1016/S0254-0584(02)00343-7.
K.F. Moustafa, M. Rekaby, E.T. El Shenawy and N.M. Khattab, J. Appl. Sci. Res., 8, 4393 (2012).
C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev and A.J. Austin, R. Cammi C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision A.1, Gaussian Inc., Pittsburgh PA (2003).
N. Mir and M. Salavati-Niasari, Sol. Energy, 86, 3397 (2012); https://doi.org/10.1016/j.solener.2012.08.016.
T. Lopez, R. Gomez, E. Sanchez, F. Tzompantzi and L. Vera, J. SolGel Sci. Technol., 22, 99 (2001); https://doi.org/10.1023/A:1011272521955.
R. Gaba, M. Bhandari and R. Kakkar, Adv. Mater. Lett., 4, 769 (2013); https://doi.org/10.5185/amlett.2013.2424.
H. Chang and Y.-L. Lo, Solar Energy, 84, 1833 (2010); https://doi.org/10.1016/j.solener.2010.07.009.