Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization and Crystal Structure of 2-Pyridinecarboxamide
Corresponding Author(s) : Zhao-Sheng Cai
Asian Journal of Chemistry,
Vol. 32 No. 1 (2020): Vol 32 Issue 1
Abstract
2-Pyridinecarboxamide was synthesized from 2-picoline through two-steps reaction. Initially, 2-picoline was converted into 2-cyanopyridine by ammoxidation in a stainless-steel fixed-bed reactor at 370 ºC with V2O5 loaded on TiO2 as catalyst. The 2-cyanopyridine was transformed into 2-pyridinecarboxamide through oxidation hydrolysis in basic solution using MnO2 as oxidant at 70 ºC. The final product was characterized by FT-IR, NMR and UV-visible analysis, and 2-pyridinecarboxamide in the final product was determined using HPLC. The crystal structure of 2-pyridinecarboxamide was investigated using X-ray diffraction and SHELX 2018/3 (sh) software and the result indicated that 2-pyridinecarboxamide crystallized in the monoclinic system, space group P21/n with a = 5.207(2), b = 7.097(3), c = 16.243(6) Å, V = 595.7 (4) Å3; Z = 4.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.S. Xu, Y. Wang, F.P. Yang, C.H. Wu, Z.Wang, B. Ye, X.R. Jiang, Q.J. Zhao, J.F. Li, Y.J. Liu, J.C Zhang, G.H. Tian, Y. He, J.S. Shen and H.L. Jiang, Bioorg. Med. Chem. Letts.,28, 606 (2018); https://doi.org/10.1016/j.bmcl.2018.01.038.
- M. Mitsuya, K. Kamata, M. Bamba, H. Watanabe, Y. Sasaki, K. Sasaki, S. Ohyama, H. Hosaka, Y. Nagata, J. Eiki and T. Nishimura, Bioorg. Med. Chem. Letts.,19, 2718 (2009); https://doi.org/10.1016/j.bmcl.2009.03.137.
- X.Q. He, Q.Y. Lin, R.D. Hu and X.H. Lu, Spectrochim. Acta A Mol. Biomol. Spectrosc., 68, 184 (2007); https://doi.org/10.1016/j.saa.2006.11.012.
- Q.H. Zhu, X.Y. Wang, Z.X. Chu, G.W. He, G.P. Dong and Y.G. Xu, Bioorg. Med. Chem. Lett., 23, 1993 (2013); https://doi.org/10.1016/j.bmcl.2013.02.032.
- K.N. Ali, A. Parhami, M.N.S. Rad and A. Zarea, Tetrahedron Lett., 46, 6879 (2005); https://doi.org/10.1016/j.tetlet.2005.08.021.
- M. Tamura, T. Tonomura, K. Shimizu and A. Satsuma, Appl. Catal. A: Gen., 417-418, 6 (2012); https://doi.org/10.1016/j.apcata.2011.12.004.
- W. Wang, X.M. Zhao, J.L. Wang, X. Geng, J.F. Gong, X.Q. Hao and M.P. Song, Tetrahedron Lett., 55, 3192 (2014); https://doi.org/10.1016/j.tetlet.2014.04.020.
- J.B. Pan, J.M. Huang, J.X. Li, Z.Y. Jiang, J.L. Lan, C. Qian and X.Z. Chen, Monatsh. Chem., 145,1365 (2014); https://doi.org/10.1007/s00706-014-1196-7.
References
M.S. Xu, Y. Wang, F.P. Yang, C.H. Wu, Z.Wang, B. Ye, X.R. Jiang, Q.J. Zhao, J.F. Li, Y.J. Liu, J.C Zhang, G.H. Tian, Y. He, J.S. Shen and H.L. Jiang, Bioorg. Med. Chem. Letts.,28, 606 (2018); https://doi.org/10.1016/j.bmcl.2018.01.038.
M. Mitsuya, K. Kamata, M. Bamba, H. Watanabe, Y. Sasaki, K. Sasaki, S. Ohyama, H. Hosaka, Y. Nagata, J. Eiki and T. Nishimura, Bioorg. Med. Chem. Letts.,19, 2718 (2009); https://doi.org/10.1016/j.bmcl.2009.03.137.
X.Q. He, Q.Y. Lin, R.D. Hu and X.H. Lu, Spectrochim. Acta A Mol. Biomol. Spectrosc., 68, 184 (2007); https://doi.org/10.1016/j.saa.2006.11.012.
Q.H. Zhu, X.Y. Wang, Z.X. Chu, G.W. He, G.P. Dong and Y.G. Xu, Bioorg. Med. Chem. Lett., 23, 1993 (2013); https://doi.org/10.1016/j.bmcl.2013.02.032.
K.N. Ali, A. Parhami, M.N.S. Rad and A. Zarea, Tetrahedron Lett., 46, 6879 (2005); https://doi.org/10.1016/j.tetlet.2005.08.021.
M. Tamura, T. Tonomura, K. Shimizu and A. Satsuma, Appl. Catal. A: Gen., 417-418, 6 (2012); https://doi.org/10.1016/j.apcata.2011.12.004.
W. Wang, X.M. Zhao, J.L. Wang, X. Geng, J.F. Gong, X.Q. Hao and M.P. Song, Tetrahedron Lett., 55, 3192 (2014); https://doi.org/10.1016/j.tetlet.2014.04.020.
J.B. Pan, J.M. Huang, J.X. Li, Z.Y. Jiang, J.L. Lan, C. Qian and X.Z. Chen, Monatsh. Chem., 145,1365 (2014); https://doi.org/10.1007/s00706-014-1196-7.