Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Transition Metal Complexes of Pyridyl Ligand as Light Emitting Materials in OLEDs
Corresponding Author(s) : Giriyapura R. Vijayakumar
Asian Journal of Chemistry,
Vol. 32 No. 1 (2020): Vol 32 Issue 1
Abstract
Transition metal complexes, viz., tetrapyridylbis(isothiocyanato)nickel(II) (1), dipyridylbis(isothiocyanato)copper(II) (2) and dipyridylbis-(isothiocyanato)zinc(II) (3) were synthesized by conventional methods. All the synthesized metal complexes were characterized by spectral and elemental analysis. Diffused reflectance (DR) spectra of the complexes 1-3 recorded in the range 200-1100 nm exhibit major peaks at 450 nm and 750 nm (% diffused reflectance 50 and 55, respectively) for complex 1, 500 nm (20 % diffused reflectance) for complex 2 and 400 nm (50 % diffused reflectance) for complex 3. The excitation and emission peaks obtained from photoluminescence spectra indicated the emission of white, green and white lights by the complexes 1, 2 and 3, respectively. From diffused reflectance spectra, the measured band gap energies were found to be 3.95 eV for complex 1, 2.77 eV for complex 2 and 4.3 eV for complex 3. Commission Internationale de l'Eclairage (CIE) coordinates of (0.31533, 0.33082), (0.22605, 0.35099) and (0.28633, 0.31012) were calculated for the complexes 1, 2 and 3, respectively. The phosphors 1-3 were readily soluble in various common organic solvents and they could become promising light emitting materials in organic light emitting diodes (OLEDs).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.W. Tang and S.A. Vanslyke, Appl. Phy. Lett., 51, 913 (1987); https://doi.org/10.1063/1.98799.
- M.A. Baldo, D.F. O’Brien, Y. You, A. Shoustikov, M.E. Thompson, S. Sibley and S.R. Forrest, Nature, 395, 151 (1998); https://doi.org/10.1038/25954.
- S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüeesem and K. Leo, Nature, 459, 234 (2009); https://doi.org/10.1038/nature08003.
- H. Uoyama, K. Goushi, K. Shizu, H. Nomura and C. Adachi, Nature, 492, 234 (2012); https://doi.org/10.1038/nature11687.
- L.X. Xiao, Z.J. Chen, B. Qu, J.X. Luo, S. Kong, Q.H. Gong and J. Kido, Adv. Mater., 23, 926 (2011); https://doi.org/10.1002/adma.201003128.
- Y.T. Tao, C.L. Yang and J.G. Qin, Chem. Soc. Rev., 40, 2943 (2011); https://doi.org/10.1039/c0cs00160k.
- S.R. Forrest, Nature, 428, 911 (2004); https://doi.org/10.1038/nature02498.
- T. Yu, W. Su, W. Li, Z. Hong, R. Hua and B. Li, Thin Solid Films, 515, 4080 (2007); https://doi.org/10.1016/j.tsf.2006.11.001.
- Y. Yi, X.Q. Wei, M.G. Xie and Z.Y. Lu, Chin. Chem. Lett., 15, 525 (2004).
- Y. Qiu, Y. Shao, D.Q. Zhang and X.Y. Hong, Jpn. J. Appl. Phys., 39, 1151 (2000); https://doi.org/10.1143/JJAP.39.1151.
- M. Kim, J.S. Kim, D.M. Shin, Y.K. Kim and Y. Ha, Bull. Korean Chem. Soc., 22, 743 (2001).
- H. Kunkely and A. Vogler, Inorg. Chim. Acta, 321, 171 (2001); https://doi.org/10.1016/S0020-1693(01)00508-4.
- Y. Hamada, T. Sano, M. Fujita, T. Fujii, Y. Nishio and K. Shibata, Jpn. J. Appl. Phys., 32, L511 (1993); https://doi.org/10.1143/JJAP.32.L511.
- A.F. Rausch, M.E. Thompson and H. Yersin, J. Phys. Chem. A, 113, 5927 (2009); https://doi.org/10.1021/jp902261c.
- R. Kumar, P. Bhargava and A. Dvivedi, Procedia Mater. Sci., 10, 37 (2015); https://doi.org/10.1016/j.mspro.2015.06.023.
- K. Rahul, B. Parag, C. Gayatri and S. Ritu, Adv. Sci. Lett., 20, 1001 (2014); https://doi.org/10.1166/asl.2014.5445.
- H. Xu, Z.-F. Xu, Z.-Y. Yue, P.-F. Yan, B. Wang, L.-W. Jia, G.-M. Li, W.-B. Sun and J.-W. Zhang, J. Phys. Chem. C, 112, 15517 (2008); https://doi.org/10.1021/jp803325g.
- S.-G. Roh, Y.-H. Kim, K.D. Seo, D.H. Lee, H.K. Kim, Y.-I Park, J.-W. Park and J.-H Lee, Adv. Funct. Mater., 19, 1663 (2009); https://doi.org/10.1002/adfm.200801122.
- J. Slinker, D. Bernards, P.L. Houston, H.D. Abruna, S. Bernhard and G.G. Malliaras, Chem. Commun., 19, 2392 (2003); https://doi.org/10.1039/B304265K.
- W. Nilushi and D.A. Thomas, Semicond. Sci. Technol., 30, 104002 (2015); https://doi.org/10.1088/0268-1242/30/10/104002.
- J. Kido, M. Kimura and K. Nagai, Science, 267, 1332 (1995); https://doi.org/10.1126/science.267.5202.1332.
- Y. Sun, N.C. Giebink, H. Kanno, B. Ma, M.E. Thompson and S.R. Forrest, Nature, 440, 908 (2006); https://doi.org/10.1038/nature04645.
- G. Zhou, W.-Y. Wong and S. Suo, J. Photochem. Photobiol. C: Photochem. Rev., 11, 133 (2010); https://doi.org/10.1016/j.jphotochemrev.2011.01.001.
- B.K. George, A.A. Richard and L.H. Fred, J. Chem. Educ., 50, 70 (1973); https://doi.org/10.1021/ed050p70.
- C.J. Nyman, J. Am. Chem. Soc., 75, 3575 (1953); https://doi.org/10.1021/ja01110a077.
- J. Werner and C. Näther, Polyhedron, 98, 96 (2015); https://doi.org/10.1016/j.poly.2015.06.004.
- S. Suckert, L.S. Germann, R.E. Dinnebier, J. Werner and C. Näther, Crystals, 6, 38 (2016); https://doi.org/10.3390/cryst6040038.
- G.L. Miessler, P.J. Fischer and D.A. Tarr, Inorganic Chemistry, Pearson: Upper Sadler River, New Jersey, edn 5 (2014).
- A.E. Morales, E.S. Mora and U. Pal, Rev. Mex. Fis. S, 53, 18 (2007).
- Publication CIE no 17.4, International Lighting Vocabulary, Central Bureau of the Commission Internationale de L ‘Eclairage, Vienna, Austria (1987).
- Publication CIE no 15.2, Colorimetry, Second Edition, Central Bureau of the Commission Internationale de L ‘Eclairage, Vienna, Austria (1986).
- M. Srinivas, T.O. Shrungeshkumar, K.M. Mahadevan, S. Naveen, G.R.Vijayakumar, H. Nagabhushana, M.N. Kumara and N.K. Lokanath, J. Sci. Adv. Mater. Devices, 1, 324 (2016); https://doi.org/10.1016/j.jsamd.2016.07.002.
- M. Srinivas, G.R. Vijayakumar, K.M. Mahadevan, H. Nagabhushana, H.S. Bhojya Naik, J. Sci. Adv. Mater. Devices, 2, 156 (2017); https://doi.org/10.1016/j.jsamd.2017.02.008.
References
C.W. Tang and S.A. Vanslyke, Appl. Phy. Lett., 51, 913 (1987); https://doi.org/10.1063/1.98799.
M.A. Baldo, D.F. O’Brien, Y. You, A. Shoustikov, M.E. Thompson, S. Sibley and S.R. Forrest, Nature, 395, 151 (1998); https://doi.org/10.1038/25954.
S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüeesem and K. Leo, Nature, 459, 234 (2009); https://doi.org/10.1038/nature08003.
H. Uoyama, K. Goushi, K. Shizu, H. Nomura and C. Adachi, Nature, 492, 234 (2012); https://doi.org/10.1038/nature11687.
L.X. Xiao, Z.J. Chen, B. Qu, J.X. Luo, S. Kong, Q.H. Gong and J. Kido, Adv. Mater., 23, 926 (2011); https://doi.org/10.1002/adma.201003128.
Y.T. Tao, C.L. Yang and J.G. Qin, Chem. Soc. Rev., 40, 2943 (2011); https://doi.org/10.1039/c0cs00160k.
S.R. Forrest, Nature, 428, 911 (2004); https://doi.org/10.1038/nature02498.
T. Yu, W. Su, W. Li, Z. Hong, R. Hua and B. Li, Thin Solid Films, 515, 4080 (2007); https://doi.org/10.1016/j.tsf.2006.11.001.
Y. Yi, X.Q. Wei, M.G. Xie and Z.Y. Lu, Chin. Chem. Lett., 15, 525 (2004).
Y. Qiu, Y. Shao, D.Q. Zhang and X.Y. Hong, Jpn. J. Appl. Phys., 39, 1151 (2000); https://doi.org/10.1143/JJAP.39.1151.
M. Kim, J.S. Kim, D.M. Shin, Y.K. Kim and Y. Ha, Bull. Korean Chem. Soc., 22, 743 (2001).
H. Kunkely and A. Vogler, Inorg. Chim. Acta, 321, 171 (2001); https://doi.org/10.1016/S0020-1693(01)00508-4.
Y. Hamada, T. Sano, M. Fujita, T. Fujii, Y. Nishio and K. Shibata, Jpn. J. Appl. Phys., 32, L511 (1993); https://doi.org/10.1143/JJAP.32.L511.
A.F. Rausch, M.E. Thompson and H. Yersin, J. Phys. Chem. A, 113, 5927 (2009); https://doi.org/10.1021/jp902261c.
R. Kumar, P. Bhargava and A. Dvivedi, Procedia Mater. Sci., 10, 37 (2015); https://doi.org/10.1016/j.mspro.2015.06.023.
K. Rahul, B. Parag, C. Gayatri and S. Ritu, Adv. Sci. Lett., 20, 1001 (2014); https://doi.org/10.1166/asl.2014.5445.
H. Xu, Z.-F. Xu, Z.-Y. Yue, P.-F. Yan, B. Wang, L.-W. Jia, G.-M. Li, W.-B. Sun and J.-W. Zhang, J. Phys. Chem. C, 112, 15517 (2008); https://doi.org/10.1021/jp803325g.
S.-G. Roh, Y.-H. Kim, K.D. Seo, D.H. Lee, H.K. Kim, Y.-I Park, J.-W. Park and J.-H Lee, Adv. Funct. Mater., 19, 1663 (2009); https://doi.org/10.1002/adfm.200801122.
J. Slinker, D. Bernards, P.L. Houston, H.D. Abruna, S. Bernhard and G.G. Malliaras, Chem. Commun., 19, 2392 (2003); https://doi.org/10.1039/B304265K.
W. Nilushi and D.A. Thomas, Semicond. Sci. Technol., 30, 104002 (2015); https://doi.org/10.1088/0268-1242/30/10/104002.
J. Kido, M. Kimura and K. Nagai, Science, 267, 1332 (1995); https://doi.org/10.1126/science.267.5202.1332.
Y. Sun, N.C. Giebink, H. Kanno, B. Ma, M.E. Thompson and S.R. Forrest, Nature, 440, 908 (2006); https://doi.org/10.1038/nature04645.
G. Zhou, W.-Y. Wong and S. Suo, J. Photochem. Photobiol. C: Photochem. Rev., 11, 133 (2010); https://doi.org/10.1016/j.jphotochemrev.2011.01.001.
B.K. George, A.A. Richard and L.H. Fred, J. Chem. Educ., 50, 70 (1973); https://doi.org/10.1021/ed050p70.
C.J. Nyman, J. Am. Chem. Soc., 75, 3575 (1953); https://doi.org/10.1021/ja01110a077.
J. Werner and C. Näther, Polyhedron, 98, 96 (2015); https://doi.org/10.1016/j.poly.2015.06.004.
S. Suckert, L.S. Germann, R.E. Dinnebier, J. Werner and C. Näther, Crystals, 6, 38 (2016); https://doi.org/10.3390/cryst6040038.
G.L. Miessler, P.J. Fischer and D.A. Tarr, Inorganic Chemistry, Pearson: Upper Sadler River, New Jersey, edn 5 (2014).
A.E. Morales, E.S. Mora and U. Pal, Rev. Mex. Fis. S, 53, 18 (2007).
Publication CIE no 17.4, International Lighting Vocabulary, Central Bureau of the Commission Internationale de L ‘Eclairage, Vienna, Austria (1987).
Publication CIE no 15.2, Colorimetry, Second Edition, Central Bureau of the Commission Internationale de L ‘Eclairage, Vienna, Austria (1986).
M. Srinivas, T.O. Shrungeshkumar, K.M. Mahadevan, S. Naveen, G.R.Vijayakumar, H. Nagabhushana, M.N. Kumara and N.K. Lokanath, J. Sci. Adv. Mater. Devices, 1, 324 (2016); https://doi.org/10.1016/j.jsamd.2016.07.002.
M. Srinivas, G.R. Vijayakumar, K.M. Mahadevan, H. Nagabhushana, H.S. Bhojya Naik, J. Sci. Adv. Mater. Devices, 2, 156 (2017); https://doi.org/10.1016/j.jsamd.2017.02.008.