Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Spectral Studies of Some Zn(II) Complexes with Substituted N,N-Donor Ligands Derived from Pyridine-2-carbaldehyde
Corresponding Author(s) : Sajal Kundu
Asian Journal of Chemistry,
Vol. 32 No. 1 (2020): Vol 32 Issue 1
Abstract
A series of four neutral zinc complexes with substituted N,N-donor ligands viz. Ln = (E)-N-(pyridin-2-ylmethylene)anilines of composition [Zn(NO3)2(L1)] (1), [Zn(NO3)2L2] (2), [Zn(NO3)2L3] (3), [Zn(NO3)2L4] (4) were synthesized and characterized. The spectroscopic properties of the Zn(II) complexes were studied by UV-visible, fluorescence, IR and 1H NMR spectral analysis. All the zinc(II) complexes are water soluble and non-electrolyte in solution. Efforts for getting single crystals suitable for X-ray crystal structure could not be achieved. However, on the basis of spectral studies, compounds 1-4 are proposed to have octahedral geometry. The emission spectra of all the complexes show π-π* (intra-ligand) transition.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.G. Mohamed, M.M. Omar and A.M.M. Hindy, Spectrochim. Acta A Mol. Biomol. Spectrosc., 62, 1140 (2005); https://doi.org/10.1016/j.saa.2005.03.031).
- A. Scozzafava, L. Menabuoni, F. Mincione, G. Mincione and C.T. Supuran, Bioorg. Med. Chem. Lett., 11, 575 (2001); https://doi.org/10.1016/S0960-894X(00)00722-8.
- M.S. Sastry, R. Ghose and A.K. Ghose, Bull. Chem. Soc. Ethiop., 4, 61 (1990).
- N. Raman, S. Thalamuthu, J. Dhaveethuraja, M.A. Neelakandan and S.J. Banerjee, Chil. Chem. Soc., 53, 21 (2008); https://doi.org/10.4067/S0717-97072008000100025.
- E. Bermejo, A. Castineiras, L.M. Fostiak, I.G. Santos, J.K. Swearingen and D.X. West, Polyhedron, 23, 2303 (2004); https://doi.org/10.1016/j.poly.2004.07.010.
- I. Garcia Santos, A. Hagenbach and U. Abram, J. Chem. Soc., Dalton Trans., 4, 677 (2004); https://doi.org/10.1039/B312978K.
- H. Beraldo, W.F. Nacif, L.R. Teixeira and J.S. Rebouças, Transition Met. Chem., 27, 85 (2002); https://doi.org/10.1023/A:1013441400773.
- J.P. Scovill, D.L. Klayman and C.F. Franchino, J. Med. Chem., 25, 1261 (1982); https://doi.org/10.1021/jm00352a036).
- M.S. Bakkar, M.Y. Siddiqi and M.S. Monshi, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 33, 1157 (2003); https://doi.org/10.1081/SIM-120023484.
- F. Yakuphanoglu, A. Balaban, F. Dagdelen, Y. Aydogdu, M. Sekerci and B. Erk, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 32, 1865 (2002); https://doi.org/10.1081/SIM-120016475.
- B.S. Garg, M.R.P. Kurup, S.K. Jain and Y.K. Bhoon, Synth. React. Inorg. Met.-Org. Chem., 28, 1415 (1998); https://doi.org/10.1080/00945719809349415.
- A. Sreekanth, M. Joseph, H.K. Fun and M.R.P. Kurup, Polyhedron, 25, 1408 (2006); https://doi.org/10.1016/j.poly.2005.10.004.
- R. Raina and T.S. Srivastava, Inorg. Chim. Acta, 67, 83 (1982); https://doi.org/10.1016/S0020-1693(00)85045-8.
- S. Odisitse and G.E. Jackson, Inorg. Chim. Acta, 362, 125 (2009); https://doi.org/10.1016/j.ica.2008.03.092.
- S. Sondhi, N. Singhl, M. Johar, B.S. Reddy and J. Lown, Curr. Med. Chem., 9, 1045 (2002); https://doi.org/10.2174/0929867024606678.
- R.M. Mohareb, M.Y. Zaki and N.S. Abbas, Steroids, 98, 80 (2015); https://doi.org/10.1016/j.steroids.2015.03.001.
- N.H. Booth, eds.: N.H. Booth and L.E. Mcdonald, Drug and Chemical Residues in the Edible Tissues of Animals, In: Veterinary Pharmacology and Therapeutics, Iowa State University Press: Ames, IA (1988).
- V.B. Ciofalo, M.B. Latranyi, J.B. Patel and R.I. Taber, J. Pharmacol. Exp. Ther., 200, 501 (1977).
- T.G. Campbell and F.L. Urbach, Inorg. Chem., 12, 1836 (1973); https://doi.org/10.1021/ic50126a026.
- W.C. Potter and L.T. Taylor, Inorg. Chem., 15, 1329 (1976); https://doi.org/10.1021/ic50160a017.
- A. Vlèek Jr, Coord. Chem. Rev., 230, 225 (2002); https://doi.org/10.1016/S0010-8545(02)00047-4.
- J.G. Tojal and T. Rojo, Polyhedron, 18, 1123 (1999); https://doi.org/10.1016/S0277-5387(98)00402-1.
- J. García-Tojal, A. García-Orad, A. Alvarez Díaz, J.L. Serra, M.K. Urtiaga, M.I. Arriortua and T. Rojo, J. Inorg. Biochem., 84, 271 (2001); https://doi.org/10.1016/S0162-0134(01)00184-2.
- J. Zhou, Z.F. Chen, X.W. Wang, Y.S. Tan, H. Liang and Y. Zhang, Acta Crystallogr., E60, m568 (2004); https://doi.org/10.1107/S1600536804008207.
- J. Zhou, Z.F. Chen, Y.S. Tan, X.W. Wang, Y.H. Tan, H. Liang and Y. Zhang, Acta Crystallogr., E60, m519 (2004); https://doi.org/10.1107/S1600536804007494.
- H.S. Wang, L. Huang, Z.F. Chen, X.W. Wang, J. Zhou, S.M. Shi, H. Liang and K.-B. Yu, Acta Crystallogr., 60, m354 (2004); https://doi.org/10.1107/S1600536804004763.
- S.-Q. Bai, C.-J. Fang, Z. He, E.-Q. Gao, C.-H. Yan and T.S.A. Hor, Dalton Trans., 41, 13379 (2012); https://doi.org/10.1039/c2dt31186k.
- K. Das, A. Datta, P.H. Liu, J.H. Huang, C.L. Hsu, W.-T. Chang, B. Machura and C. Sinha, Polyhedron, 71, 85 (2014); https://doi.org/10.1016/j.poly.2013.12.035.
- J. Claffey, A. Deally, B. Gleeson, M. Hogan, L.M. Méndez, H. MüllerBunz, S. Patil, D. Wallis and M. Tacke, Metallomics, 1, 511 (2009); https://doi.org/10.1039/b911753a.
- M.A. Ali, A.H. Mirza, T.B.S.A. Ravoof and P.V. Bernhardt, Polyhedron, 23, 2031 (2004); https://doi.org/10.1016/j.poly.2004.05.007.
- M. Akbar Ali, A.H. Mirza, M. Nazimuddin, R. Ahmed, L.R. Gahan and P.V. Bernhardt, Polyhedron, 22, 1471 (2003); https://doi.org/10.1016/S0277-5387(03)00125-6.
- C.Y. Su, Z.F. Zhang, Q. Zhou, X.-P. Yang, L.-G. Wang and B.-S. Kang, J. Chem. Crystallogr., 28, 871 (1998); https://doi.org/10.1023/A:1022842301321.
- H. Aghabozorg, Z. Derikvand, A. Nemati, Z. Bahrami and J. Attar Gharamaleki, Acta Crystallogr., 64E, 111 (2008); https://doi.org/10.1107/S1600536807063787.
- J.X. Lin, M.L. Lin, Y.J. Su, M.-S. Liu, H.-P. Zeng and Y.-P. Cai, Transition Met. Chem., 32, 338 (2007); https://doi.org/10.1007/s11243-006-0173-3.
- L. Salassa, C. Garino, A. Albertino, G. Volpi, C. Nervi, R. Gobetto and K.I. Hardcastle, Organometallics, 27, 1427 (2008); https://doi.org/10.1021/om701175z.
- C. Garino, T. Ruiu, L. Salassa, A. Albertino, G. Volpi, C. Nervi, R. Gobetto and K.I. Hardcastle, Eur. J. Inorg. Chem., 3587 (2008); https://doi.org/10.1002/ejic.200800348.
- J.S. Choi, J.J. Braymer, S.K. Park, S. Mustafa, J. Chae and M.L. Lim, Metallomics, 3, 284 (2011); https://doi.org/10.1039/c0mt00077a.
- T.S. Basu Baul, S. Kundu, A. Linden, N. Raviprakash, S.K. Manna and M.F.C. Guedes da Silva, Dalton Trans., 43, 1191 (2014); https://doi.org/10.1039/C3DT52062E.
- N.S. Moyon and S. Mitra, J. Phys. Chem. B, 115, 10163 (2011); https://doi.org/10.1021/jp204424w.
- T.S. Basu Baul, S. Kundu, S. Mitra, H. Höpfl, E.R.T. Tiekink and A. Linden, Dalton Trans., 42, 1905 (2013); https://doi.org/10.1039/C2DT32283H.
- T.S. Basu Baul, S. Kundu, H. Höpfl, E.R.T. Tiekink and A. Linden, Polyhedron, 55, 270 (2013); https://doi.org/10.1016/j.poly.2013.03.025.
- S.S. Tandon, S. Chander and L.K. Thompson, Inorg. Chim. Acta, 300-302, 683 (2000); https://doi.org/10.1016/S0020-1693(00)00010-4.
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley: New York (1986).
- G. Mahmoudi and A. Morsali, Polyhedron, 27, 1070 (2008); https://doi.org/10.1016/j.poly.2007.12.002.
- G.J. Kleywegt, W.G.R. Wiesmeijer, G.J. Van Driel, W.L. Driessen, J. Reedijk and J.H. Noordik, J. Chem. Soc., Dalton Trans., 2177 (1985); https://doi.org/10.1039/DT9850002177.
- A.K. Boudalis, V. Nastopoulos, S.P. Perlepes, C.P. Raptopoulou and A. Terzis, Transition Met. Chem., 26, 276 (2001); https://doi.org/10.1023/A:1007185119324.
- N.F. Curtis and Y.M. Curtis, Inorg. Chem., 4, 804 (1965); https://doi.org/10.1021/ic50028a007.
- T.S. Basu Baul, S. Kundu, P. Singh, S. Shaveta and M.F.C. Guedes da Silva, Dalton Trans., 44, 2359 (2015); https://doi.org/10.1039/C4DT03151B.
- T.S. Basu Baul, S. Kundu, H. Höpfl, E.R.T. Tiekink and A. Linden, J. Coord. Chem., 67, 1061 (2014); https://doi.org/10.1080/00958972.2014.901508.
- T.K. Chattopadhyay, A.K. Kumar, A. Roy, A.S. Batsanov, E.B. Shamuratov and Y.T. Struchkov, J. Organomet. Chem., 419, 277 (1991); https://doi.org/10.1016/0022-328X(91)80240-K.
- C.C. Ji, L. Qin, Y.Z. Li, Z.J. Guo and H.G. Zheng, Cryst. Growth Des.,11, 480 (2011); https://doi.org/10.1021/cg101261f.
- C. Seward, J. Chan, D. Song and S.N. Wang, Inorg. Chem., 42, 1112 (2003); https://doi.org/10.1021/ic020480q.
- T.C. Werner, W. Hawkins, J. Facci, R. Torrisi and T. Trembath, J. Phys. Chem., 82, 298 (1978); https://doi.org/10.1021/j100492a010.
- M. Wiebcke and D. Mootz, Acta Crystallogr., 38B, 2008 (1982); https://doi.org/10.1107/S0567740882007766
References
G.G. Mohamed, M.M. Omar and A.M.M. Hindy, Spectrochim. Acta A Mol. Biomol. Spectrosc., 62, 1140 (2005); https://doi.org/10.1016/j.saa.2005.03.031).
A. Scozzafava, L. Menabuoni, F. Mincione, G. Mincione and C.T. Supuran, Bioorg. Med. Chem. Lett., 11, 575 (2001); https://doi.org/10.1016/S0960-894X(00)00722-8.
M.S. Sastry, R. Ghose and A.K. Ghose, Bull. Chem. Soc. Ethiop., 4, 61 (1990).
N. Raman, S. Thalamuthu, J. Dhaveethuraja, M.A. Neelakandan and S.J. Banerjee, Chil. Chem. Soc., 53, 21 (2008); https://doi.org/10.4067/S0717-97072008000100025.
E. Bermejo, A. Castineiras, L.M. Fostiak, I.G. Santos, J.K. Swearingen and D.X. West, Polyhedron, 23, 2303 (2004); https://doi.org/10.1016/j.poly.2004.07.010.
I. Garcia Santos, A. Hagenbach and U. Abram, J. Chem. Soc., Dalton Trans., 4, 677 (2004); https://doi.org/10.1039/B312978K.
H. Beraldo, W.F. Nacif, L.R. Teixeira and J.S. Rebouças, Transition Met. Chem., 27, 85 (2002); https://doi.org/10.1023/A:1013441400773.
J.P. Scovill, D.L. Klayman and C.F. Franchino, J. Med. Chem., 25, 1261 (1982); https://doi.org/10.1021/jm00352a036).
M.S. Bakkar, M.Y. Siddiqi and M.S. Monshi, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 33, 1157 (2003); https://doi.org/10.1081/SIM-120023484.
F. Yakuphanoglu, A. Balaban, F. Dagdelen, Y. Aydogdu, M. Sekerci and B. Erk, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 32, 1865 (2002); https://doi.org/10.1081/SIM-120016475.
B.S. Garg, M.R.P. Kurup, S.K. Jain and Y.K. Bhoon, Synth. React. Inorg. Met.-Org. Chem., 28, 1415 (1998); https://doi.org/10.1080/00945719809349415.
A. Sreekanth, M. Joseph, H.K. Fun and M.R.P. Kurup, Polyhedron, 25, 1408 (2006); https://doi.org/10.1016/j.poly.2005.10.004.
R. Raina and T.S. Srivastava, Inorg. Chim. Acta, 67, 83 (1982); https://doi.org/10.1016/S0020-1693(00)85045-8.
S. Odisitse and G.E. Jackson, Inorg. Chim. Acta, 362, 125 (2009); https://doi.org/10.1016/j.ica.2008.03.092.
S. Sondhi, N. Singhl, M. Johar, B.S. Reddy and J. Lown, Curr. Med. Chem., 9, 1045 (2002); https://doi.org/10.2174/0929867024606678.
R.M. Mohareb, M.Y. Zaki and N.S. Abbas, Steroids, 98, 80 (2015); https://doi.org/10.1016/j.steroids.2015.03.001.
N.H. Booth, eds.: N.H. Booth and L.E. Mcdonald, Drug and Chemical Residues in the Edible Tissues of Animals, In: Veterinary Pharmacology and Therapeutics, Iowa State University Press: Ames, IA (1988).
V.B. Ciofalo, M.B. Latranyi, J.B. Patel and R.I. Taber, J. Pharmacol. Exp. Ther., 200, 501 (1977).
T.G. Campbell and F.L. Urbach, Inorg. Chem., 12, 1836 (1973); https://doi.org/10.1021/ic50126a026.
W.C. Potter and L.T. Taylor, Inorg. Chem., 15, 1329 (1976); https://doi.org/10.1021/ic50160a017.
A. Vlèek Jr, Coord. Chem. Rev., 230, 225 (2002); https://doi.org/10.1016/S0010-8545(02)00047-4.
J.G. Tojal and T. Rojo, Polyhedron, 18, 1123 (1999); https://doi.org/10.1016/S0277-5387(98)00402-1.
J. García-Tojal, A. García-Orad, A. Alvarez Díaz, J.L. Serra, M.K. Urtiaga, M.I. Arriortua and T. Rojo, J. Inorg. Biochem., 84, 271 (2001); https://doi.org/10.1016/S0162-0134(01)00184-2.
J. Zhou, Z.F. Chen, X.W. Wang, Y.S. Tan, H. Liang and Y. Zhang, Acta Crystallogr., E60, m568 (2004); https://doi.org/10.1107/S1600536804008207.
J. Zhou, Z.F. Chen, Y.S. Tan, X.W. Wang, Y.H. Tan, H. Liang and Y. Zhang, Acta Crystallogr., E60, m519 (2004); https://doi.org/10.1107/S1600536804007494.
H.S. Wang, L. Huang, Z.F. Chen, X.W. Wang, J. Zhou, S.M. Shi, H. Liang and K.-B. Yu, Acta Crystallogr., 60, m354 (2004); https://doi.org/10.1107/S1600536804004763.
S.-Q. Bai, C.-J. Fang, Z. He, E.-Q. Gao, C.-H. Yan and T.S.A. Hor, Dalton Trans., 41, 13379 (2012); https://doi.org/10.1039/c2dt31186k.
K. Das, A. Datta, P.H. Liu, J.H. Huang, C.L. Hsu, W.-T. Chang, B. Machura and C. Sinha, Polyhedron, 71, 85 (2014); https://doi.org/10.1016/j.poly.2013.12.035.
J. Claffey, A. Deally, B. Gleeson, M. Hogan, L.M. Méndez, H. MüllerBunz, S. Patil, D. Wallis and M. Tacke, Metallomics, 1, 511 (2009); https://doi.org/10.1039/b911753a.
M.A. Ali, A.H. Mirza, T.B.S.A. Ravoof and P.V. Bernhardt, Polyhedron, 23, 2031 (2004); https://doi.org/10.1016/j.poly.2004.05.007.
M. Akbar Ali, A.H. Mirza, M. Nazimuddin, R. Ahmed, L.R. Gahan and P.V. Bernhardt, Polyhedron, 22, 1471 (2003); https://doi.org/10.1016/S0277-5387(03)00125-6.
C.Y. Su, Z.F. Zhang, Q. Zhou, X.-P. Yang, L.-G. Wang and B.-S. Kang, J. Chem. Crystallogr., 28, 871 (1998); https://doi.org/10.1023/A:1022842301321.
H. Aghabozorg, Z. Derikvand, A. Nemati, Z. Bahrami and J. Attar Gharamaleki, Acta Crystallogr., 64E, 111 (2008); https://doi.org/10.1107/S1600536807063787.
J.X. Lin, M.L. Lin, Y.J. Su, M.-S. Liu, H.-P. Zeng and Y.-P. Cai, Transition Met. Chem., 32, 338 (2007); https://doi.org/10.1007/s11243-006-0173-3.
L. Salassa, C. Garino, A. Albertino, G. Volpi, C. Nervi, R. Gobetto and K.I. Hardcastle, Organometallics, 27, 1427 (2008); https://doi.org/10.1021/om701175z.
C. Garino, T. Ruiu, L. Salassa, A. Albertino, G. Volpi, C. Nervi, R. Gobetto and K.I. Hardcastle, Eur. J. Inorg. Chem., 3587 (2008); https://doi.org/10.1002/ejic.200800348.
J.S. Choi, J.J. Braymer, S.K. Park, S. Mustafa, J. Chae and M.L. Lim, Metallomics, 3, 284 (2011); https://doi.org/10.1039/c0mt00077a.
T.S. Basu Baul, S. Kundu, A. Linden, N. Raviprakash, S.K. Manna and M.F.C. Guedes da Silva, Dalton Trans., 43, 1191 (2014); https://doi.org/10.1039/C3DT52062E.
N.S. Moyon and S. Mitra, J. Phys. Chem. B, 115, 10163 (2011); https://doi.org/10.1021/jp204424w.
T.S. Basu Baul, S. Kundu, S. Mitra, H. Höpfl, E.R.T. Tiekink and A. Linden, Dalton Trans., 42, 1905 (2013); https://doi.org/10.1039/C2DT32283H.
T.S. Basu Baul, S. Kundu, H. Höpfl, E.R.T. Tiekink and A. Linden, Polyhedron, 55, 270 (2013); https://doi.org/10.1016/j.poly.2013.03.025.
S.S. Tandon, S. Chander and L.K. Thompson, Inorg. Chim. Acta, 300-302, 683 (2000); https://doi.org/10.1016/S0020-1693(00)00010-4.
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley: New York (1986).
G. Mahmoudi and A. Morsali, Polyhedron, 27, 1070 (2008); https://doi.org/10.1016/j.poly.2007.12.002.
G.J. Kleywegt, W.G.R. Wiesmeijer, G.J. Van Driel, W.L. Driessen, J. Reedijk and J.H. Noordik, J. Chem. Soc., Dalton Trans., 2177 (1985); https://doi.org/10.1039/DT9850002177.
A.K. Boudalis, V. Nastopoulos, S.P. Perlepes, C.P. Raptopoulou and A. Terzis, Transition Met. Chem., 26, 276 (2001); https://doi.org/10.1023/A:1007185119324.
N.F. Curtis and Y.M. Curtis, Inorg. Chem., 4, 804 (1965); https://doi.org/10.1021/ic50028a007.
T.S. Basu Baul, S. Kundu, P. Singh, S. Shaveta and M.F.C. Guedes da Silva, Dalton Trans., 44, 2359 (2015); https://doi.org/10.1039/C4DT03151B.
T.S. Basu Baul, S. Kundu, H. Höpfl, E.R.T. Tiekink and A. Linden, J. Coord. Chem., 67, 1061 (2014); https://doi.org/10.1080/00958972.2014.901508.
T.K. Chattopadhyay, A.K. Kumar, A. Roy, A.S. Batsanov, E.B. Shamuratov and Y.T. Struchkov, J. Organomet. Chem., 419, 277 (1991); https://doi.org/10.1016/0022-328X(91)80240-K.
C.C. Ji, L. Qin, Y.Z. Li, Z.J. Guo and H.G. Zheng, Cryst. Growth Des.,11, 480 (2011); https://doi.org/10.1021/cg101261f.
C. Seward, J. Chan, D. Song and S.N. Wang, Inorg. Chem., 42, 1112 (2003); https://doi.org/10.1021/ic020480q.
T.C. Werner, W. Hawkins, J. Facci, R. Torrisi and T. Trembath, J. Phys. Chem., 82, 298 (1978); https://doi.org/10.1021/j100492a010.
M. Wiebcke and D. Mootz, Acta Crystallogr., 38B, 2008 (1982); https://doi.org/10.1107/S0567740882007766