Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Application of Novel Coal Fly Ash Supported C-Doped TiO2-SnO2 Photocatalytic Nanocomposite for the Removal of Dyes in Water
Corresponding Author(s) : P. Nyamukamba
Asian Journal of Chemistry,
Vol. 32 No. 12 (2020): Vol 32 Issue 12, 2020
Abstract
Herein, the preparation, characterization and applications of novel carbon doped titanium dioxide and tin oxide nanocomposite supported on coal fly ash (C-TiO2-SnO2/CFA) are reported. The nanocomposite nanoparticles were successfully synthesized by a sol-gel method and calcined at 550 ºC. XRD analysis showed that SnO2 nanoparticles were polycrystalline in nature and TiO2 had both anatase and rutile phases. Diffuse reflectance spectra showed that carbon doping reduced the band gap of TiO2 from 3.19 eV to 2.78 eV. The nanoparticles′ photocatalytic activity was evaluated using methyl orange and methylene blue dyes, under both UV light and solar irradiation at different pH, pollutant concentration and photocatalyst loading. High photodegradation rates of methyl orange were achieved under visible light. The optimum loading of composite photocatalyst was 0.4 g with removal efficiencies of 97.75% for methyl orange and 99.25% for methylene blue after 3 h. High removal efficiencies were achieved for methyl orange at pH 3 and for methylene blue at pH 10.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Visa, L. Isac and A. Duta, J. Appl. Surf. Sci., 339, 62 (2015); https://doi.org/10.1016/j.apsusc.2015.02.159
- J.Q. Jiang, Z. Zhou and V. Sharma, J. Microchem., 110, 292 (2013); https://doi.org/10.1016/j.microc.2013.04.014
- A.M.K. El-ghonemy, Renew. Sustain. Energy Rev., 18, 6 (2013); https://doi.org/10.1016/j.rser.2012.09.022
- P.Y. Chan, M. Gamal El-Din and J.R. Bolton, Water Res., 46, 5672 (2012); https://doi.org/10.1016/j.watres.2012.07.047
- M. Tahir and N.S. Amin, J. Appl. Cat. Buss. Environ., 162, 98 (2015); https://doi.org/10.1016/j.apcatb.2014.06.037
- P. Nyamukamba, L. Tichagwa, J.C. Ngila and L. Petrik, J. Photochem. Photobiol. Chem., 343, 85 (2017); https://doi.org/10.1016/j.jphotochem.2017.04.014
- K. Bouras, J.L. Rehspringer, G. Schmerber, H. Rinnert, G. Ferblantier, S. Colis, M. Balestrieri, D. Ihiawakrim, A. Dinia and A. Slaoui, J. Mater. Chem.C, 2, 8235 (2014); https://doi.org/10.1039/C4TC01202J
- K. Anandan and V. Rajendran, Superlatt. Microstruct., 85, 185 (2015); https://doi.org/10.1016/j.spmi.2015.05.031
- G. Sanzone, M. Zimbone, G. Cacciato, F. Ruffino, R. Carles, V. Privitera and M.G. Grimaldi, Superlatt. Microstruct., 123, 394 (2018); https://doi.org/10.1016/j.spmi.2018.09.028
- M.B. Suwarnkar, R.S. Dhabbe, A.N. Kadam and K.M. Garadkar, Ceram. Int., 40, 5489 (2014); https://doi.org/10.1016/j.ceramint.2013.10.137
- M. Visa and A. Duta, Chem. Eng. J., 223, 860 (2013); https://doi.org/10.1016/j.cej.2013.03.062
- S. Wu, C. Li, W. Wei, H. Wang, Y. Song, Y. Zhu and L. Lu, J. Rare Earths, 28(Suppl. 1), 171 (2010); https://doi.org/10.1016/S1002-0721(10)60313-4
- M.A. Behnajady, H. Eskandarloo, N. Modirshahla and M. Shokri, Desalination, 278, 10 (2011); https://doi.org/10.1016/j.desal.2011.04.019
- Z. Luo, Y. Zhu, E. Liu, T. Hu, Z. Li, T. Liu and L. Song, Mater. Res. Bull., 60, 105 (2014); https://doi.org/10.1016/j.materresbull.2014.08.022
- T.M. Mokgehle, H. Richards, L. Chimuka, W.M. Gitari and N.T. Tavengwa, Miner. Eng., 141, 105851 (2019); https://doi.org/10.1016/j.mineng.2019.105851
- A. Samadi, R. Ahmadi and S.M. Hosseini, Org. Electron., 75, 105405 (2019); https://doi.org/10.1016/j.orgel.2019.105405
- N.U.M. Nor and N.A.S. Amin, J. CO2 Utilization, 33, 372 (2019); https://doi.org/10.1016/j.jcou.2019.07.002
- S. Varnagiris, A. Medvids, M. Lelis, D. Milcius and A. Antuzevics, J. Photochem. Photobiol. A, 382, 111941 (2019); https://doi.org/10.1016/j.jphotochem.2019.111941
- Y. Zheng, L. Ke, D. Xia, Y. Zheng, Y. Wang, H. Li and Q. Li, Sep. Purif. Technol., 163, 282 (2016); https://doi.org/10.1016/j.seppur.2016.01.052
- G.D. Khuspe, S.T. Navale, M.A. Chougule, S. Sen, G.L. Agawane, J.H. Kim and V.B. Patil, Synth. Met., 178, 1 (2013); https://doi.org/10.1016/j.synthmet.2013.06.022
- A. Kusior, L. Zych, K. Zakrzewska and M. Radeck, Appl. Surf. Sci., 471, 973 (2019); https://doi.org/10.1016/j.apsusc.2018.11.226
- P. Nyamukamba, L. Tichagwa, S. Mamphweli and L. Petrik, Int. J. Photoenergy, 2017, 3079276 (2017); https://doi.org/10.1155/2017/3079276
- I. Fatimah, N.I. Prakoso, I. Sahroni, M.M. Musawwa, Y.L. Sim, F. Kooli and O. Muraza, Heliyon, 5, e02766 (2019); https://doi.org/10.1016/j.heliyon.2019.e02766
- C.H. Nguyen, C.C. Fu and R.S. Juang, J. Clean. Prod., 202, 413 (2018); https://doi.org/10.1016/j.jclepro.2018.08.110
- Z. Zhao, Y. Lei, W. Liu, J. Fan, D. Xue, Y. Xue and S. Yin, Adv. Powder Technol., 28, 3233 (2017); https://doi.org/10.1016/j.apt.2017.09.035
- N.L. Gavade, S.B. Babar, A.N. Kadam, A.D. Gophane and K.M. Garadkar, Ind. Eng. Chem. Res., 56, 14489 (2017); https://doi.org/10.1021/acs.iecr.7b03168
- T.N.T. Thu, N.N. Thi, V.T. Quang, N.K. Hong, T.N. Minh and N.L.T. Hoai, J. Exp. Nanosci., 3, 226 (2016); https://doi.org/10.1080/17458080.2015.1053541
- D.I. Cifci and S. Meric, Glob. NEST J., 17, 653 (2016); https://doi.org/10.30955/gnj.001715
- J. Lin, Z. Luo, J. Liu and P. Li, Mater. Sci. Semicond. Process., 87, 24 (2018); https://doi.org/10.1016/j.mssp.2018.07.003
- S. Siddiqui, F. Zohra and S.A. Chaudhry, Environ. Res., 178, 108667 (2019); https://doi.org/10.1016/j.envres.2019.108667
- J. Yin, S. Huang, Z. Jian, Z. Wang and Y. Zhang, Mater. Sci. Semicond. Process., 34, 198 (2015); https://doi.org/10.1016/j.mssp.2015.02.044
- H. Liu, D. Yu, T. Sun, H. Du, W. Jiang, Y. Muhammad and L. Huang, Appl. Surf. Sci., 473, 855 (2019); https://doi.org/10.1016/j.apsusc.2018.12.162
- J. Liu, X. Liu, J. Li, L. Pan and Z. Sun, RSC Adv., 4, 38594 (2014); https://doi.org/10.1039/C4RA05389C
- R. Raliya, C. Avery, S. Chakrabarti and P. Biswas, Appl. Nanosci., 7, 253 (2017); https://doi.org/10.1007/s13204-017-0565-z
- C. Lin, Y. Gao, J. Zhang, D. Xue, H. Fang, J. Tian, C. Zhou, C. Zhang, Y. Li and H. Li, J. Mater. Res., 35, 1307 (2020); https://doi.org/10.1557/jmr.2020.41
- T. Kim, V.G. Parale, H.N.R. Jung, Y. Kim, Z. Driss, D. Driss, A. Bouabidi, S. Euchy and H.H. Park, Nanomater., 9, 358 (2019); https://doi.org/10.3390/nano9030358
- C. Wang, Z. Shi, L. Peng, W. He, B. Li and K. Li, Surf. Interfaces, 7, 116 (2017); https://doi.org/10.1016/j.surfin.2017.03.007
References
M. Visa, L. Isac and A. Duta, J. Appl. Surf. Sci., 339, 62 (2015); https://doi.org/10.1016/j.apsusc.2015.02.159
J.Q. Jiang, Z. Zhou and V. Sharma, J. Microchem., 110, 292 (2013); https://doi.org/10.1016/j.microc.2013.04.014
A.M.K. El-ghonemy, Renew. Sustain. Energy Rev., 18, 6 (2013); https://doi.org/10.1016/j.rser.2012.09.022
P.Y. Chan, M. Gamal El-Din and J.R. Bolton, Water Res., 46, 5672 (2012); https://doi.org/10.1016/j.watres.2012.07.047
M. Tahir and N.S. Amin, J. Appl. Cat. Buss. Environ., 162, 98 (2015); https://doi.org/10.1016/j.apcatb.2014.06.037
P. Nyamukamba, L. Tichagwa, J.C. Ngila and L. Petrik, J. Photochem. Photobiol. Chem., 343, 85 (2017); https://doi.org/10.1016/j.jphotochem.2017.04.014
K. Bouras, J.L. Rehspringer, G. Schmerber, H. Rinnert, G. Ferblantier, S. Colis, M. Balestrieri, D. Ihiawakrim, A. Dinia and A. Slaoui, J. Mater. Chem.C, 2, 8235 (2014); https://doi.org/10.1039/C4TC01202J
K. Anandan and V. Rajendran, Superlatt. Microstruct., 85, 185 (2015); https://doi.org/10.1016/j.spmi.2015.05.031
G. Sanzone, M. Zimbone, G. Cacciato, F. Ruffino, R. Carles, V. Privitera and M.G. Grimaldi, Superlatt. Microstruct., 123, 394 (2018); https://doi.org/10.1016/j.spmi.2018.09.028
M.B. Suwarnkar, R.S. Dhabbe, A.N. Kadam and K.M. Garadkar, Ceram. Int., 40, 5489 (2014); https://doi.org/10.1016/j.ceramint.2013.10.137
M. Visa and A. Duta, Chem. Eng. J., 223, 860 (2013); https://doi.org/10.1016/j.cej.2013.03.062
S. Wu, C. Li, W. Wei, H. Wang, Y. Song, Y. Zhu and L. Lu, J. Rare Earths, 28(Suppl. 1), 171 (2010); https://doi.org/10.1016/S1002-0721(10)60313-4
M.A. Behnajady, H. Eskandarloo, N. Modirshahla and M. Shokri, Desalination, 278, 10 (2011); https://doi.org/10.1016/j.desal.2011.04.019
Z. Luo, Y. Zhu, E. Liu, T. Hu, Z. Li, T. Liu and L. Song, Mater. Res. Bull., 60, 105 (2014); https://doi.org/10.1016/j.materresbull.2014.08.022
T.M. Mokgehle, H. Richards, L. Chimuka, W.M. Gitari and N.T. Tavengwa, Miner. Eng., 141, 105851 (2019); https://doi.org/10.1016/j.mineng.2019.105851
A. Samadi, R. Ahmadi and S.M. Hosseini, Org. Electron., 75, 105405 (2019); https://doi.org/10.1016/j.orgel.2019.105405
N.U.M. Nor and N.A.S. Amin, J. CO2 Utilization, 33, 372 (2019); https://doi.org/10.1016/j.jcou.2019.07.002
S. Varnagiris, A. Medvids, M. Lelis, D. Milcius and A. Antuzevics, J. Photochem. Photobiol. A, 382, 111941 (2019); https://doi.org/10.1016/j.jphotochem.2019.111941
Y. Zheng, L. Ke, D. Xia, Y. Zheng, Y. Wang, H. Li and Q. Li, Sep. Purif. Technol., 163, 282 (2016); https://doi.org/10.1016/j.seppur.2016.01.052
G.D. Khuspe, S.T. Navale, M.A. Chougule, S. Sen, G.L. Agawane, J.H. Kim and V.B. Patil, Synth. Met., 178, 1 (2013); https://doi.org/10.1016/j.synthmet.2013.06.022
A. Kusior, L. Zych, K. Zakrzewska and M. Radeck, Appl. Surf. Sci., 471, 973 (2019); https://doi.org/10.1016/j.apsusc.2018.11.226
P. Nyamukamba, L. Tichagwa, S. Mamphweli and L. Petrik, Int. J. Photoenergy, 2017, 3079276 (2017); https://doi.org/10.1155/2017/3079276
I. Fatimah, N.I. Prakoso, I. Sahroni, M.M. Musawwa, Y.L. Sim, F. Kooli and O. Muraza, Heliyon, 5, e02766 (2019); https://doi.org/10.1016/j.heliyon.2019.e02766
C.H. Nguyen, C.C. Fu and R.S. Juang, J. Clean. Prod., 202, 413 (2018); https://doi.org/10.1016/j.jclepro.2018.08.110
Z. Zhao, Y. Lei, W. Liu, J. Fan, D. Xue, Y. Xue and S. Yin, Adv. Powder Technol., 28, 3233 (2017); https://doi.org/10.1016/j.apt.2017.09.035
N.L. Gavade, S.B. Babar, A.N. Kadam, A.D. Gophane and K.M. Garadkar, Ind. Eng. Chem. Res., 56, 14489 (2017); https://doi.org/10.1021/acs.iecr.7b03168
T.N.T. Thu, N.N. Thi, V.T. Quang, N.K. Hong, T.N. Minh and N.L.T. Hoai, J. Exp. Nanosci., 3, 226 (2016); https://doi.org/10.1080/17458080.2015.1053541
D.I. Cifci and S. Meric, Glob. NEST J., 17, 653 (2016); https://doi.org/10.30955/gnj.001715
J. Lin, Z. Luo, J. Liu and P. Li, Mater. Sci. Semicond. Process., 87, 24 (2018); https://doi.org/10.1016/j.mssp.2018.07.003
S. Siddiqui, F. Zohra and S.A. Chaudhry, Environ. Res., 178, 108667 (2019); https://doi.org/10.1016/j.envres.2019.108667
J. Yin, S. Huang, Z. Jian, Z. Wang and Y. Zhang, Mater. Sci. Semicond. Process., 34, 198 (2015); https://doi.org/10.1016/j.mssp.2015.02.044
H. Liu, D. Yu, T. Sun, H. Du, W. Jiang, Y. Muhammad and L. Huang, Appl. Surf. Sci., 473, 855 (2019); https://doi.org/10.1016/j.apsusc.2018.12.162
J. Liu, X. Liu, J. Li, L. Pan and Z. Sun, RSC Adv., 4, 38594 (2014); https://doi.org/10.1039/C4RA05389C
R. Raliya, C. Avery, S. Chakrabarti and P. Biswas, Appl. Nanosci., 7, 253 (2017); https://doi.org/10.1007/s13204-017-0565-z
C. Lin, Y. Gao, J. Zhang, D. Xue, H. Fang, J. Tian, C. Zhou, C. Zhang, Y. Li and H. Li, J. Mater. Res., 35, 1307 (2020); https://doi.org/10.1557/jmr.2020.41
T. Kim, V.G. Parale, H.N.R. Jung, Y. Kim, Z. Driss, D. Driss, A. Bouabidi, S. Euchy and H.H. Park, Nanomater., 9, 358 (2019); https://doi.org/10.3390/nano9030358
C. Wang, Z. Shi, L. Peng, W. He, B. Li and K. Li, Surf. Interfaces, 7, 116 (2017); https://doi.org/10.1016/j.surfin.2017.03.007