Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Crystal Structure, Hirshfeld Surface and Frontier Molecular Orbital Analyses of N-[2-(trifluoromethyl)phenyl]succinamic Acid
Corresponding Author(s) : P.A. Suchetan
Asian Journal of Chemistry,
Vol. 32 No. 12 (2020): Vol 32 Issue 12, 2020
Abstract
The ortho-CF3 substituent and the N-H bond are in syn-conformation in N-[2-(trifluoromethyl)phenyl]succinamic acid. In amide and acid functionalities, the carbonyl groups are directed in opposite directions to each other and their related-CH2 groups. syn-Conformation is observed for the acid functionality, where the carbonyl C=O and hydroxyl O-H bonds are directed in the same direction. Three planar fragments comprise of the molecule: aromatic ring (A), core portion -Carm-N(H)-C(=O)-C(H2)-C(H2)(B) and -C(H2)-C(=O)-OH(C). The dihedral angle between a pair of fragments being 48.6(4)º (A and B), 81.6 (4)º (B and C) and 70.5 (5)º (A and C). N-H•••O hydrogen bonds bind the molecules forming C(4) chains in the crystal, and the neighbouring anti-parallel chains are bound by O-H•••O hydrogen bonds resulting in a chair shaped ribbon of one-dimensional nature. The Hirshfeld surface study was carried out, including fingerprint plots. Studies have shown that the interactions with O•••H/H•••O (27.4%), H•••H (27.3%) and H•••F/F•••H (20.2%) substantially added to the surface. Theoretically, the highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) and various global reactivity descriptors were also computed by the density functional theory (DFT/B3LYP) approach with a 6-311G(d, p) basis set in the ground state on the geometrically optimized structure in the gas phase.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Burdulene, A. Palaima, Z. Stumbryavichyute, Z. Talaikite and V. Shimkyavichiene, Pharm. Chem. J., 33, 125 (1999); https://doi.org/10.1007/BF02508446
- D. Burdulene, Z. Stumbryavichyute, Z. Talaikite, G.V. Vladyko, E.I. Boreko and L.V. Korobchenko, Pharm. Chem. J., 31, 471 (1997); https://doi.org/10.1007/BF02464305
- D. Burdulene, Z. Stumbryavichyute, Z. Talaikite, G.V. Vladyko, E.I. Boreko and L.V. Korobchenko, Pharm. Chem. J., 30, 680 (1996); https://doi.org/10.1007/BF02223742
- D. Burdulene, Z. Stumbryavichyute, Z. Talaikite, G.A. Penyazeva, S.L. Buldakova, S.E. Metkalova, E.I. Drozdova, M.M. Olenin, V.A. Luchin and A.D. Shiryaev, Pharm. Chem. J., 29, 262 (1995); https://doi.org/10.1007/BF02219550
- L. Kubicova, K. Waisser, J. Kunes, K. Kralova, Z. Odlerova, M. Slosarek, J. Janota and Z. Svoboda, Molecules, 5, 714 (2000); https://doi.org/10.3390/50500714
- F. Hadizadeh, A. Moradi, G. Naghibi, M. Vojdani, J. Behravan and M. Ramezani, Int. J. Biomed. Sci., 3, 60 (2007).
- S.K. Seth, J. Mol. Struct., 70, 1064 (2014); https://doi.org/10.1016/j.molstruc.2014.01.068
- M.A. Spackman and J.J. McKinnon, CrystEngComm, 4, 378 (2002); https://doi.org/10.1039/B203191B
- M.A. Spackman, J.J. McKinnon and D. Jayatilaka, CrystEngComm, 10, 377 (2008); https://doi.org/10.1039/B715227B
- A. Maiti, A. Svizhenko and M.P. Anantram, Phys. Rev. Lett., 88, 1268051 (2002); https://doi.org/10.1103/PhysRevLett.88.126805
- D. Zhou, D. Ma, Y. Wang, X. Liu and X. Bao, Chem. Phys. Lett., 373, 46 (2003); https://doi.org/10.1016/S0009-2614(03)00513-X
- J. Leconte, A. Markovits, M.K. Skalli, C. Minot and A. Belmajdoub, Surf. Sci., 497, 194 (2002); https://doi.org/10.1016/S0039-6028(01)01477-7
- J.G. Wang, C.J. Liu, Z. Fang, Y. Liu and Z. Han, J. Phys. Chem. B, 108, 1653 (2004); https://doi.org/10.1021/jp035779o
- M.E. Vaschetto, B.A. Retamal and A.P. Monkman, J. Mol. Struct. THEOCHEM, 468, 209 (1999); https://doi.org/10.1016/S0166-1280(98)00624-1
- T. Clark, J. Chandrasekhar, G.W. Spitznagel and P.V.R. Schleyer, J. Comput. Chem., 4, 294 (1983); https://doi.org/10.1002/jcc.540040303
- S. Gronert, Chem. Phys. Lett., 252, 415 (1996); https://doi.org/10.1016/0009-2614(96)00162-5
- D.A. Forsyth and A.B. Sebag, J. Am. Chem. Soc., 119, 9483 (1997); https://doi.org/10.1021/ja970112z
- S. Armakovic, S.J. Armakovic and S. Koziel, Carbon, 111, 371 (2017); https://doi.org/10.1016/j.carbon.2016.10.022
- S. Armakovic, S.J. Armakovic and B.F. Abramovic, J. Mol. Model., 22, 240 (2016); https://doi.org/10.1007/s00894-016-3101-2
- B.T. Gowda, S. Foro, B.S. Saraswathi and H. Fuess, Acta Crystallogr. E, 67, o249 (2011); https://doi.org/10.1107/S160053681005364X
- Bruker. APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA (2004).
- G.M. Sheldrick, Acta Crystallogr. A, 71, 3 (2015); https://doi.org/10.1107/S2053273314026370
- A.L. Spek, Acta Crystallogr. A, 46, C34 (1990); https://doi.org/10.1107/S0108767390099780
- L.J. Farrugia, J. Appl. Cryst., 45, 849 (2012); https://doi.org/10.1107/S0021889812029111
- C.F. Macrae, I.J. Bruno, J.A. Chisholm, P.R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P.A. Wood, J. Appl. Cryst., 41, 466 (2008); https://doi.org/10.1107/S0021889807067908
- S.K. Wolff, D.J. Grimwood, J.J. McKinnon, D. Jayatilaka and M.A. Spackman, Crystal Explorer 3.0, University of Western Australia, Perth, Australia (2001).
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian, Inc., Wallingford CT (2010).
- C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
- B.T. Gowda, S. Foro, B.S. Saraswathi and H. Fuess, Acta Crystallogr. E, 66, o908 (2010); https://doi.org/10.1107/S1600536810010329
- B.T. Gowda, S. Foro, B.S. Saraswathi, H. Terao and H. Fuess, Acta Crystallogr. E, 65, o399 (2009); https://doi.org/10.1107/S1600536809002979
- M.S. Krawczyk and I. Majerz, Acta Crystallogr. E, 75, 766 (2019); https://doi.org/10.1107/S2052520619009065
- M.J. Turner, J.J. Mckinnon, S.K. Wolff, D.J. Grimwood and P.R. Spackman, D. Jayatilaka and M. A. Spackman, CrystalExplorer17, The University of Western Australia, Perth, Australia (2017).
- T.A. Koopmans, Physica, 1, 104 (1934); https://doi.org/10.1016/S0031-8914(34)90011-2
- R.J. Parr, L.V. Szentpaly and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999); https://doi.org/10.1021/ja983494x
References
D. Burdulene, A. Palaima, Z. Stumbryavichyute, Z. Talaikite and V. Shimkyavichiene, Pharm. Chem. J., 33, 125 (1999); https://doi.org/10.1007/BF02508446
D. Burdulene, Z. Stumbryavichyute, Z. Talaikite, G.V. Vladyko, E.I. Boreko and L.V. Korobchenko, Pharm. Chem. J., 31, 471 (1997); https://doi.org/10.1007/BF02464305
D. Burdulene, Z. Stumbryavichyute, Z. Talaikite, G.V. Vladyko, E.I. Boreko and L.V. Korobchenko, Pharm. Chem. J., 30, 680 (1996); https://doi.org/10.1007/BF02223742
D. Burdulene, Z. Stumbryavichyute, Z. Talaikite, G.A. Penyazeva, S.L. Buldakova, S.E. Metkalova, E.I. Drozdova, M.M. Olenin, V.A. Luchin and A.D. Shiryaev, Pharm. Chem. J., 29, 262 (1995); https://doi.org/10.1007/BF02219550
L. Kubicova, K. Waisser, J. Kunes, K. Kralova, Z. Odlerova, M. Slosarek, J. Janota and Z. Svoboda, Molecules, 5, 714 (2000); https://doi.org/10.3390/50500714
F. Hadizadeh, A. Moradi, G. Naghibi, M. Vojdani, J. Behravan and M. Ramezani, Int. J. Biomed. Sci., 3, 60 (2007).
S.K. Seth, J. Mol. Struct., 70, 1064 (2014); https://doi.org/10.1016/j.molstruc.2014.01.068
M.A. Spackman and J.J. McKinnon, CrystEngComm, 4, 378 (2002); https://doi.org/10.1039/B203191B
M.A. Spackman, J.J. McKinnon and D. Jayatilaka, CrystEngComm, 10, 377 (2008); https://doi.org/10.1039/B715227B
A. Maiti, A. Svizhenko and M.P. Anantram, Phys. Rev. Lett., 88, 1268051 (2002); https://doi.org/10.1103/PhysRevLett.88.126805
D. Zhou, D. Ma, Y. Wang, X. Liu and X. Bao, Chem. Phys. Lett., 373, 46 (2003); https://doi.org/10.1016/S0009-2614(03)00513-X
J. Leconte, A. Markovits, M.K. Skalli, C. Minot and A. Belmajdoub, Surf. Sci., 497, 194 (2002); https://doi.org/10.1016/S0039-6028(01)01477-7
J.G. Wang, C.J. Liu, Z. Fang, Y. Liu and Z. Han, J. Phys. Chem. B, 108, 1653 (2004); https://doi.org/10.1021/jp035779o
M.E. Vaschetto, B.A. Retamal and A.P. Monkman, J. Mol. Struct. THEOCHEM, 468, 209 (1999); https://doi.org/10.1016/S0166-1280(98)00624-1
T. Clark, J. Chandrasekhar, G.W. Spitznagel and P.V.R. Schleyer, J. Comput. Chem., 4, 294 (1983); https://doi.org/10.1002/jcc.540040303
S. Gronert, Chem. Phys. Lett., 252, 415 (1996); https://doi.org/10.1016/0009-2614(96)00162-5
D.A. Forsyth and A.B. Sebag, J. Am. Chem. Soc., 119, 9483 (1997); https://doi.org/10.1021/ja970112z
S. Armakovic, S.J. Armakovic and S. Koziel, Carbon, 111, 371 (2017); https://doi.org/10.1016/j.carbon.2016.10.022
S. Armakovic, S.J. Armakovic and B.F. Abramovic, J. Mol. Model., 22, 240 (2016); https://doi.org/10.1007/s00894-016-3101-2
B.T. Gowda, S. Foro, B.S. Saraswathi and H. Fuess, Acta Crystallogr. E, 67, o249 (2011); https://doi.org/10.1107/S160053681005364X
Bruker. APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA (2004).
G.M. Sheldrick, Acta Crystallogr. A, 71, 3 (2015); https://doi.org/10.1107/S2053273314026370
A.L. Spek, Acta Crystallogr. A, 46, C34 (1990); https://doi.org/10.1107/S0108767390099780
L.J. Farrugia, J. Appl. Cryst., 45, 849 (2012); https://doi.org/10.1107/S0021889812029111
C.F. Macrae, I.J. Bruno, J.A. Chisholm, P.R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P.A. Wood, J. Appl. Cryst., 41, 466 (2008); https://doi.org/10.1107/S0021889807067908
S.K. Wolff, D.J. Grimwood, J.J. McKinnon, D. Jayatilaka and M.A. Spackman, Crystal Explorer 3.0, University of Western Australia, Perth, Australia (2001).
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian, Inc., Wallingford CT (2010).
C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
B.T. Gowda, S. Foro, B.S. Saraswathi and H. Fuess, Acta Crystallogr. E, 66, o908 (2010); https://doi.org/10.1107/S1600536810010329
B.T. Gowda, S. Foro, B.S. Saraswathi, H. Terao and H. Fuess, Acta Crystallogr. E, 65, o399 (2009); https://doi.org/10.1107/S1600536809002979
M.S. Krawczyk and I. Majerz, Acta Crystallogr. E, 75, 766 (2019); https://doi.org/10.1107/S2052520619009065
M.J. Turner, J.J. Mckinnon, S.K. Wolff, D.J. Grimwood and P.R. Spackman, D. Jayatilaka and M. A. Spackman, CrystalExplorer17, The University of Western Australia, Perth, Australia (2017).
T.A. Koopmans, Physica, 1, 104 (1934); https://doi.org/10.1016/S0031-8914(34)90011-2
R.J. Parr, L.V. Szentpaly and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999); https://doi.org/10.1021/ja983494x