Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Structural Investigation and Antimicrobial Properties of Macrocyclic Zinc(II) Complexes with N2O2-Donor Schiff Bases Incorporating 1,2,4-Triazole Ring
Corresponding Author(s) : Soumitra K. Sengupta
Asian Journal of Chemistry,
Vol. 32 No. 12 (2020): Vol 32 Issue 12, 2020
Abstract
A novel series of nano-sized zinc(II) complexes of type [{Zn(M)(H2O)2}(CH3COO–)2] (where M = macrocyclic ligands) has been synthesized by the in situ reactions of Schiff bases derived from 3-(phenyl/substituted phenyl)-4-amino-5-hydrazino-1,2,4-triazoles, salicyldehyde/2-hydroxy-1-naphthaldehyde and 1,4-dibromobutane/1,5-dibromopentane in presence of zinc(II) acetate dihydrate in absolute ethanol. The structures of all these zinc(II) complexes were established on the basis of elemental analyses and spectral data (IR, 1H NMR and 13C NMR). Scanning electron microscopy studies have been carried out to investigate the particle size and surface morphology of a particular complex while thermal studies confirm the presence of coordinated water molecules in all the zinc(II) complexes. The antimicrobial effects of all the synthesized complexes were studied against different species of pathogenic fungi and bacteria.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.G. Küçükgüzel and P. Çikla-Süzgün, Eur. J. Med. Chem., 97, 830 (2015); https://doi.org/10.1016/j.ejmech.2014.11.033
- Y. Ünver, S. Deniz, F. Çelik, Z. Akar, M. Küçük and K. Sancak, J. Enzyme Inhib. Med. Chem., 31(Supl.3), 89 (2016); https://doi.org/10.1080/14756366.2016.1206088
- R. Kharb, P.C. Sharma and M.S. Yar, J. Enzyme Inhib. Med. Chem., 26, 1 (2011); https://doi.org/10.3109/14756360903524304
- X. Chai, S. Yu, Y. Jiang, Y. Zou, Q. Wu, D. Zhang, Y. Jiang, Y. Cao and Q. Sun, Arch. Pharm. Res., 35, 1895 (2012); https://doi.org/10.1007/s12272-012-1105-8
- R. Kaur, A.R. Dwivedi, B. Kumar and V. Kumar, Anti-Cancer Agents Med. Chem., 16, 465 (2016); https://doi.org/10.2174/1871520615666150819121106
- H.T. Balaydin, M. Özil and M. Sentürk, Arch. Pharm., 351, e1800086 (2018); https://doi.org/10.1002/ardp.201800086
- E. Basaran, A. Karaküçük-Iyidogan, D. Schols and E.E. Oruç-Emre, Chirality, 28, 495 (2016); https://doi.org/10.1002/chir.22607
- M. Abdel-Aziz, E.A. Beshr, I.M. Abdel-Rahman, K. Ozadali, O.U. Tan and O.M. Aly, Eur. J. Med. Chem., 77, 155 (2014); https://doi.org/10.1016/j.ejmech.2014.03.001
- T. Plech, B. Kaproñ, A. Paneth, U. Kosikowska, A. Malm, A. Strzelczyk, P. Staczek, L. Swiatek, B. Rajtar and M. Polz-Dacewicz, Eur. J. Med. Chem., 97, 94 (2015); https://doi.org/10.1016/j.ejmech.2015.04.058
- S. Zhang, Z. Xu, C. Gao, Q.C. Ren, L. Chang, Z.S. Lv and L.S. Feng, Eur. J. Med. Chem., 138, 501 (2017); https://doi.org/10.1016/j.ejmech.2017.06.051
- Y. Zhang, G.L.V. Damu, S. Cui, J. Mi, V.K.R. Tangadanchu and C. Zhou, MedChemComm, 8, 1631 (2017); https://doi.org/10.1039/C7MD00112F
- I. Bräunlich, Polynuclear Metal(II) Complexes With 1,2,4-Triazole Derivatives, ETHZURICH, Diss. ETH No. 22187 (2014).
- V. Mathew, J. Keshavayya, V.P. Vaidya and M.H.M. Khan, J. Coord. Chem., 61, 2629 (2008); https://doi.org/10.1080/00958970801950615
- A.S. Belapure, Ph.D. Dissertation, Synthesis and Catalytic Applications of 1,2,4-Triazoles in Oxidative Processes, University of Tennessee (2012).
- G.K. Pandey, S. Srivastava, O.P. Pandey and S.K. Sengupta, Indian J. Chem., 37A, 447 (1998).
- S. Singh, D.P. Rao, A.K. Yadava and H.S. Yadava, Curr. Res. Chem., 3, 106 (2011).
- S. Singh, H.S. Yadava, A.K. Yadava and D.P. Rao, Int. J. Chemtech Res., 3, 1863 (2011).
- M.R. Maurya, Coord. Chem. Rev., 237, 163 (2003); https://doi.org/10.1016/S0010-8545(02)00293-X
- M.L. Sharma, S.K. Sengupta and O.P. Pandey, Spectrochim. Acta A Mol. Biomol. Spectrosc., 95, 562 (2012); https://doi.org/10.1016/j.saa.2012.04.050
- R.C. Holm, G.W. Everett and A. Chakravorty, Prog. Inorg. Chem., 7, 83 (1966).
- R.H. Holm and M.J. O’Connor, Prog. Inorg. Chem., 14, 241 (1971).
- M.P. Suh and S.K. Kim, Inorg. Chem., 32, 3562 (1993); https://doi.org/10.1021/ic00068a030
- M. Beley, J.P. Collin, R. Ruppert and J.P. Sauvage, J. Chem. Soc., 108, 7461 (1986); https://doi.org/10.1021/ja00284a003
- F.C.J.M. Van Veggel, S. Harkema, M. Bos, W. Verboom, C.J. Van Staveren, G.J. Gerritsma and D.N. Reinhoudt, Inorg. Chem., 28, 1133 (1989); https://doi.org/10.1021/ic00305a025
- P. Banerjee, O.P. Pandey and S.K. Sengupta, Transition Met. Chem., 33, 1047 (2008); https://doi.org/10.1007/s11243-008-9152-1
- Q. Ain, S.K. Pandey, O.P. Pandey and S.K. Sengupta, Appl. Organomet. Chem., 30, 102 (2016); https://doi.org/10.1002/aoc.3405
- P.G. Avaji, B.N. Reddy, S.A. Patil and P.S. Badami, Transition Met. Chem., 31, 842 (2006); https://doi.org/10.1007/s11243-006-0066-5
- P. Singh, T.K. Yadav, M. Karabacak, R.A. Yadav and N.P. Singh, Spectrochim. Acta A Mol. Biomol. Spectrosc., 96, 1 (2012); https://doi.org/10.1016/j.saa.2012.08.042
- A.K. Singh, S.K. Pandey, O.P. Pandey and S.K. Sengupta, J. Mol. Struct., 1074, 376 (2014); https://doi.org/10.1016/j.molstruc.2014.06.009
- A. Ferrari, A. Braibanti, G. Bigliardi and A.M. Lanfredi, Acta Crystallogr., 19, 548 (1965); https://doi.org/10.1107/S0365110X65003870
- G.V. Mahesh and K.C. Patil, Thermochim. Acta, 99, 153 (1986); https://doi.org/10.1016/0040-6031(86)85277-7
- K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, Wiley: New York (1963).
- A. Guinier, X-Ray Diffraction in Crystals, Imperfect Crystals and Amorphous Bodies, W.H. Freeman: San-Francisco, USA (1963).
- U. Holzwarth and N. Gibson, Nat. Nanotechnol., 6, 534 (2011); https://doi.org/10.1038/nnano.2011.145
References
S.G. Küçükgüzel and P. Çikla-Süzgün, Eur. J. Med. Chem., 97, 830 (2015); https://doi.org/10.1016/j.ejmech.2014.11.033
Y. Ünver, S. Deniz, F. Çelik, Z. Akar, M. Küçük and K. Sancak, J. Enzyme Inhib. Med. Chem., 31(Supl.3), 89 (2016); https://doi.org/10.1080/14756366.2016.1206088
R. Kharb, P.C. Sharma and M.S. Yar, J. Enzyme Inhib. Med. Chem., 26, 1 (2011); https://doi.org/10.3109/14756360903524304
X. Chai, S. Yu, Y. Jiang, Y. Zou, Q. Wu, D. Zhang, Y. Jiang, Y. Cao and Q. Sun, Arch. Pharm. Res., 35, 1895 (2012); https://doi.org/10.1007/s12272-012-1105-8
R. Kaur, A.R. Dwivedi, B. Kumar and V. Kumar, Anti-Cancer Agents Med. Chem., 16, 465 (2016); https://doi.org/10.2174/1871520615666150819121106
H.T. Balaydin, M. Özil and M. Sentürk, Arch. Pharm., 351, e1800086 (2018); https://doi.org/10.1002/ardp.201800086
E. Basaran, A. Karaküçük-Iyidogan, D. Schols and E.E. Oruç-Emre, Chirality, 28, 495 (2016); https://doi.org/10.1002/chir.22607
M. Abdel-Aziz, E.A. Beshr, I.M. Abdel-Rahman, K. Ozadali, O.U. Tan and O.M. Aly, Eur. J. Med. Chem., 77, 155 (2014); https://doi.org/10.1016/j.ejmech.2014.03.001
T. Plech, B. Kaproñ, A. Paneth, U. Kosikowska, A. Malm, A. Strzelczyk, P. Staczek, L. Swiatek, B. Rajtar and M. Polz-Dacewicz, Eur. J. Med. Chem., 97, 94 (2015); https://doi.org/10.1016/j.ejmech.2015.04.058
S. Zhang, Z. Xu, C. Gao, Q.C. Ren, L. Chang, Z.S. Lv and L.S. Feng, Eur. J. Med. Chem., 138, 501 (2017); https://doi.org/10.1016/j.ejmech.2017.06.051
Y. Zhang, G.L.V. Damu, S. Cui, J. Mi, V.K.R. Tangadanchu and C. Zhou, MedChemComm, 8, 1631 (2017); https://doi.org/10.1039/C7MD00112F
I. Bräunlich, Polynuclear Metal(II) Complexes With 1,2,4-Triazole Derivatives, ETHZURICH, Diss. ETH No. 22187 (2014).
V. Mathew, J. Keshavayya, V.P. Vaidya and M.H.M. Khan, J. Coord. Chem., 61, 2629 (2008); https://doi.org/10.1080/00958970801950615
A.S. Belapure, Ph.D. Dissertation, Synthesis and Catalytic Applications of 1,2,4-Triazoles in Oxidative Processes, University of Tennessee (2012).
G.K. Pandey, S. Srivastava, O.P. Pandey and S.K. Sengupta, Indian J. Chem., 37A, 447 (1998).
S. Singh, D.P. Rao, A.K. Yadava and H.S. Yadava, Curr. Res. Chem., 3, 106 (2011).
S. Singh, H.S. Yadava, A.K. Yadava and D.P. Rao, Int. J. Chemtech Res., 3, 1863 (2011).
M.R. Maurya, Coord. Chem. Rev., 237, 163 (2003); https://doi.org/10.1016/S0010-8545(02)00293-X
M.L. Sharma, S.K. Sengupta and O.P. Pandey, Spectrochim. Acta A Mol. Biomol. Spectrosc., 95, 562 (2012); https://doi.org/10.1016/j.saa.2012.04.050
R.C. Holm, G.W. Everett and A. Chakravorty, Prog. Inorg. Chem., 7, 83 (1966).
R.H. Holm and M.J. O’Connor, Prog. Inorg. Chem., 14, 241 (1971).
M.P. Suh and S.K. Kim, Inorg. Chem., 32, 3562 (1993); https://doi.org/10.1021/ic00068a030
M. Beley, J.P. Collin, R. Ruppert and J.P. Sauvage, J. Chem. Soc., 108, 7461 (1986); https://doi.org/10.1021/ja00284a003
F.C.J.M. Van Veggel, S. Harkema, M. Bos, W. Verboom, C.J. Van Staveren, G.J. Gerritsma and D.N. Reinhoudt, Inorg. Chem., 28, 1133 (1989); https://doi.org/10.1021/ic00305a025
P. Banerjee, O.P. Pandey and S.K. Sengupta, Transition Met. Chem., 33, 1047 (2008); https://doi.org/10.1007/s11243-008-9152-1
Q. Ain, S.K. Pandey, O.P. Pandey and S.K. Sengupta, Appl. Organomet. Chem., 30, 102 (2016); https://doi.org/10.1002/aoc.3405
P.G. Avaji, B.N. Reddy, S.A. Patil and P.S. Badami, Transition Met. Chem., 31, 842 (2006); https://doi.org/10.1007/s11243-006-0066-5
P. Singh, T.K. Yadav, M. Karabacak, R.A. Yadav and N.P. Singh, Spectrochim. Acta A Mol. Biomol. Spectrosc., 96, 1 (2012); https://doi.org/10.1016/j.saa.2012.08.042
A.K. Singh, S.K. Pandey, O.P. Pandey and S.K. Sengupta, J. Mol. Struct., 1074, 376 (2014); https://doi.org/10.1016/j.molstruc.2014.06.009
A. Ferrari, A. Braibanti, G. Bigliardi and A.M. Lanfredi, Acta Crystallogr., 19, 548 (1965); https://doi.org/10.1107/S0365110X65003870
G.V. Mahesh and K.C. Patil, Thermochim. Acta, 99, 153 (1986); https://doi.org/10.1016/0040-6031(86)85277-7
K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, Wiley: New York (1963).
A. Guinier, X-Ray Diffraction in Crystals, Imperfect Crystals and Amorphous Bodies, W.H. Freeman: San-Francisco, USA (1963).
U. Holzwarth and N. Gibson, Nat. Nanotechnol., 6, 534 (2011); https://doi.org/10.1038/nnano.2011.145