Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of Nanostructured Cobalt Oxides using Cobalt(II) Fumarate Hydrate as Metal-Organic Precursor
Corresponding Author(s) : M. Gogoi
Asian Journal of Chemistry,
Vol. 32 No. 12 (2020): Vol 32 Issue 12, 2020
Abstract
A series of nanostructured cobalt oxides have been prepared from a metal-organic precursor viz. [Co(fum)(H2O)4]·H2O (fum = fumarate) by using capping agents, ethylene glycol and polyethylene glycol via thermal and solvothermal decomposition in ethanol and also by doping with RuCl3·xH2O via solvothermal route. The nano oxides were characterized by IR, UV-vis spectroscopy, powder XRD, SEM and TEM analysis. The nano oxides exhibit varied morphologies and particle sizes. The TEM images reveal homogeneously distributed particles for all the oxides. The band gap energy values the Ru-doped cobalt oxide was found to be lower than the generally accepted values.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Walter, E. Welcomme, P. Hallegot, N.J. Zaluzec, C. Deeb, J. Castaing, P. Veyssiere, R. Breniaux, J.-L. Leveque and G. Tsoucaris, Nano Lett., 6, 2215 (2006); https://doi.org/10.1021/nl061493u
- J. Zhu, K. Kailasam, A. Fischer and A. Thomas, ACS Catal., 1, 342 (2011); https://doi.org/10.1021/cs100153a
- M. Reibold, P. Paufler, A.A. Levin, W. Kochmann, N. Patzke and D.C. Meyer, Nature, 444, 286 (2006); https://doi.org/10.1038/444286a
- L. Sciortino, A. Longo, F. Giannici and A. Martorana, J. Phys.: Conf. Ser., 190, 012125 (2009); https://doi.org/10.1088/1742-6596/190/1/012125
- G. Schmid, Endeavour, 14, 172 (1990); https://doi.org/10.1016/0160-9327(90)90040-X
- K.P. Gable and T.N. Phan, J. Am. Chem. Soc., 116, 833 (1994); https://doi.org/10.1021/ja00082a002
- J. Tao, M.L. Tong, J.X. Shi, X.M. Chen and S. Ng, Chem. Commun., 20, 2043 (2000); https://doi.org/10.1039/b005753n
- K.W. Chi, C. Addicott, A.M. Arif and P.J. Stang, J. Am. Chem. Soc., 126, 16569 (2004); https://doi.org/10.1021/ja045542l
- T. Hyeon, Chem. Commun., 120, 927 (2003); https://doi.org/10.1039/b207789b
- L. Hu, Q. Peng and Y. Li, J. Am. Chem. Soc., 130, 16136 (2008); https://doi.org/10.1021/ja806400e
- I. Panagiotopoulos, V. Alexandrakis, G. Basina, S. Pal, H. Srikanth, D. Niarchos, G. Hadjipanayis and V. Tzitzios, Cryst. Growth Des., 9, 3353 (2009); https://doi.org/10.1021/cg8006487
- J. Feng and H.C. Zeng, Chem. Mater., 15, 2829 (2003); https://doi.org/10.1021/cm020940d
- T. He, D. Chen, X. Jiao, Y. Xu and Y. Gu, Langmuir, 20, 8404 (2004); https://doi.org/10.1021/la0488710
- C.U. Mordi, M.A. Eleruja, B.A. Taleatu, G.O. Egharevba, A.V. Adedeji, O.O. Akinwunmi, B. Olofinjana, C. Jeynes and E.O.B. Ajayi, J. Mater. Sci. Technol., 25, 85 (2009).
- M.Y. Masoomi and A. Morsali, Coord. Chem. Rev., 256, 2921 (2012); https://doi.org/10.1016/j.ccr.2012.05.032
- L. Zhuo, J. Ge, L. Cao and B. Tang, Cryst. Growth Des., 9, 1 (2009); https://doi.org/10.1021/cg070482r
- S.J. Bora and B.K. Das, J. Solid State Chem., 192, 93 (2012); https://doi.org/10.1016/j.jssc.2012.03.009
- R.A. Bepari, Ph.D. Thesis, Gauhati University, Guwahati, India (2014).
- B.K. Das and J.H. Clark, Chem. Commun., 605 (2000); https://doi.org/10.1039/b000535p
- L.L. Chng, N. Erathodiyil and J.Y. Ying, Acc. Chem. Res., 46, 1825 (2013); https://doi.org/10.1021/ar300197s
- T. Moritz, J. Reiss, K. Diesner, D. Su and A. Chemseddine, J. Phys. Chem. B, 101, 8052 (1997); https://doi.org/10.1021/jp9705131
- G. Deacon, Coord. Chem. Rev., 33, 227 (1980); https://doi.org/10.1016/S0010-8545(00)80455-5
References
P. Walter, E. Welcomme, P. Hallegot, N.J. Zaluzec, C. Deeb, J. Castaing, P. Veyssiere, R. Breniaux, J.-L. Leveque and G. Tsoucaris, Nano Lett., 6, 2215 (2006); https://doi.org/10.1021/nl061493u
J. Zhu, K. Kailasam, A. Fischer and A. Thomas, ACS Catal., 1, 342 (2011); https://doi.org/10.1021/cs100153a
M. Reibold, P. Paufler, A.A. Levin, W. Kochmann, N. Patzke and D.C. Meyer, Nature, 444, 286 (2006); https://doi.org/10.1038/444286a
L. Sciortino, A. Longo, F. Giannici and A. Martorana, J. Phys.: Conf. Ser., 190, 012125 (2009); https://doi.org/10.1088/1742-6596/190/1/012125
G. Schmid, Endeavour, 14, 172 (1990); https://doi.org/10.1016/0160-9327(90)90040-X
K.P. Gable and T.N. Phan, J. Am. Chem. Soc., 116, 833 (1994); https://doi.org/10.1021/ja00082a002
J. Tao, M.L. Tong, J.X. Shi, X.M. Chen and S. Ng, Chem. Commun., 20, 2043 (2000); https://doi.org/10.1039/b005753n
K.W. Chi, C. Addicott, A.M. Arif and P.J. Stang, J. Am. Chem. Soc., 126, 16569 (2004); https://doi.org/10.1021/ja045542l
T. Hyeon, Chem. Commun., 120, 927 (2003); https://doi.org/10.1039/b207789b
L. Hu, Q. Peng and Y. Li, J. Am. Chem. Soc., 130, 16136 (2008); https://doi.org/10.1021/ja806400e
I. Panagiotopoulos, V. Alexandrakis, G. Basina, S. Pal, H. Srikanth, D. Niarchos, G. Hadjipanayis and V. Tzitzios, Cryst. Growth Des., 9, 3353 (2009); https://doi.org/10.1021/cg8006487
J. Feng and H.C. Zeng, Chem. Mater., 15, 2829 (2003); https://doi.org/10.1021/cm020940d
T. He, D. Chen, X. Jiao, Y. Xu and Y. Gu, Langmuir, 20, 8404 (2004); https://doi.org/10.1021/la0488710
C.U. Mordi, M.A. Eleruja, B.A. Taleatu, G.O. Egharevba, A.V. Adedeji, O.O. Akinwunmi, B. Olofinjana, C. Jeynes and E.O.B. Ajayi, J. Mater. Sci. Technol., 25, 85 (2009).
M.Y. Masoomi and A. Morsali, Coord. Chem. Rev., 256, 2921 (2012); https://doi.org/10.1016/j.ccr.2012.05.032
L. Zhuo, J. Ge, L. Cao and B. Tang, Cryst. Growth Des., 9, 1 (2009); https://doi.org/10.1021/cg070482r
S.J. Bora and B.K. Das, J. Solid State Chem., 192, 93 (2012); https://doi.org/10.1016/j.jssc.2012.03.009
R.A. Bepari, Ph.D. Thesis, Gauhati University, Guwahati, India (2014).
B.K. Das and J.H. Clark, Chem. Commun., 605 (2000); https://doi.org/10.1039/b000535p
L.L. Chng, N. Erathodiyil and J.Y. Ying, Acc. Chem. Res., 46, 1825 (2013); https://doi.org/10.1021/ar300197s
T. Moritz, J. Reiss, K. Diesner, D. Su and A. Chemseddine, J. Phys. Chem. B, 101, 8052 (1997); https://doi.org/10.1021/jp9705131
G. Deacon, Coord. Chem. Rev., 33, 227 (1980); https://doi.org/10.1016/S0010-8545(00)80455-5