Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
NMR & Electronic Spectra, NLO, FMO, NBO and Thermodynamic Properties of Pentachlorophenol: An Experimental and Theoretical Investigation
Corresponding Author(s) : P. Venkata Ramana Rao
Asian Journal of Chemistry,
Vol. 32 No. 12 (2020): Vol 32 Issue 12, 2020
Abstract
Proton (1H) and Carbon-13 (13C) nuclear magnetic resonance spectra of pentachlorophenol were measured. Corresponding chemical shifts were generated using Gauge Independent Atomic Orbital (GIAO) approach, as a part of density functional theory (DFT) application. UV-visible spectrum was measured in the spectral range 200-400 nm and compared with its simulated counterpart generated, using time-dependent density functional theory (TD-DFT). Frontier molecular orbital (FMO) approach was used to understand origin of UV-visible spectrum and chemical reactivity of the molecule. The non-linear (NLO) behaviour was studied by evaluating the values of dipole moment, polarizability and hyperpolarizability. Molecular electrostatic potential (MESP) surface was drawn to locate reactive sites of pentachlorophenol. Natural bond orbital (NBO) analysis of the molecule was made to examine stability of the molecule arising from charge delocalization. Thermodynamic parameters of the molecule were also calculated.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.T. Proudfoot, Toxicol. Rev., 22, 3 (2003); https://doi.org/10.2165/00139709-200322010-00002
- B.G. Reigner, R.A. Gungon, F.Y. Bois, L. Zeise and T.N. Tozer, J. Pharm. Sci., 81, 1113 (1992); https://doi.org/10.1002/jps.2600811115
- M.S. Salkinoja-Salonen, P.J.M. Middeldorp, M. Briglia, R.J. Valo, M.M. Haggblom. A. McBain and J.H.A. Apajalahti. Adv. Appl. Biotechnol., 4, 347 (1989).
- M.M. Laine and K.S. Jørgensen, Appl. Environ. Microbiol., 62, 1507 (1996); https://doi.org/10.1128/aem.62.5.1507-1513.1996
- C.S. Orser and C.C. Lange, Biodegradation, 5, 277 (1994); https://doi.org/10.1007/BF00696465
- M. Czaplicka, Sci. Total Environ., 322, 21 (2004); https://doi.org/10.1016/j.scitotenv.2003.09.015
- P.V. Ramana Rao and G.R. Rao, Spectrochim. Acta A Mol. Biomol. Spectrosc., 58, 3039 (2002); https://doi.org/10.1016/S1386-1425(02)00101-4
- P.V. Ramana Rao and G.R. Rao, Spectrochim. Acta A Mol. Biomol. Spectrosc., 58, 3205 (2002); https://doi.org/10.1016/S1386-1425(02)00102-6
- K. Srishailam, B.V. Reddy and G.R. Rao, J. Mol. Struct., 1196, 139 (2019); https://doi.org/10.1016/j.molstruc.2019.06.064
- K. Ramaiah, K. Srishailam, K.L. Reddy, B.V. Reddy and G.R. Rao, J. Mol. Struct., 1184, 405 (2019); https://doi.org/10.1016/j.molstruc.2019.02.060
- K. Srishailam, P.V. Ramana Rao, L. Ravindranath, B.V. Reddy and G.R. Rao, J. Mol. Struct., 1178, 142 (2019); https://doi.org/10.1016/j.molstruc.2018.10.022
- P.V. Ramana Rao, K. Srishailam, L. Ravindranath, B.V. Reddy and G.R. Rao, J. Mol. Struct., 1180, 665 (2019); https://doi.org/10.1016/j.molstruc.2018.12.036
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision B.01; Gaussian, Inc., Wallingford CT (2010).
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
- C. Lee, W.T. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
- K. Wolinski, R. Haacke, J.F. Hinton and P. Pulay, J. Comput. Chem., 18, 816 (1997); https://doi.org/10.1002/(SICI)1096-987X(19970430)18:6<816::AIDJCC7>3.0.CO;2-V
- G. Scalmani and M.J. Frisch, J. Chem. Phys., 132, 114110 (2010); https://doi.org/10.1063/1.3359469
- R. Improta, V. Barone, G. Scalmani and M.J. Frisch, J. Chem. Phys., 125, 054103 (2006); https://doi.org/10.1063/1.2222364
- R. Improta, G. Scalmani, M.J. Frisch and V. Barone, J. Chem. Phys., 127, 074504 (2007); https://doi.org/10.1063/1.2757168
- A.D. Buckingham, eds.: Joseph O. Hirschfelder, Permanent and Induced Molecular Moments and Long-Range Intermolecular Forces, In Advances in Chemical Physics: Intermolecular Forces, John Wiley & Sons, Inc., volume 12, p. 107 (1967).
- D.A. McQuarrie, Thermodynamics, Harper and Row: New York (1973).
- G. Gece, Corros. Sci., 50, 2981 (2008); https://doi.org/10.1016/j.corsci.2008.08.043
- K. Fukui, Science, 218, 747 (1982); https://doi.org/10.1126/science.218.4574.747
- T. Koopmans, Physica, 1, 104 (1933); https://doi.org/10.1016/S0031-8914(34)90011-2
- R.G. Parr, L.V. Szentpa’ly and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999); https://doi.org/10.1021/ja983494x
- N. Özdemir, B. Eren, M. Dincer and Y. Bekdemir, Mol. Phys., 108, 13 (2010); https://doi.org/10.1080/00268970903476688
- P. Politzer and J.S. Murray, Theor. Chem. Acc., 108, 134 (2002); https://doi.org/10.1007/s00214-002-0363-9
- A.E. Reed, L.A. Curtiss and F. Weinhold, Chem. Rev., 88, 899 (1988); https://doi.org/10.1021/cr00088a005
- J. Chocholoušová, V. Špirko and P. Hobza, Phys. Chem. Chem. Phys., 6, 37 (2004); https://doi.org/10.1039/B314148A
- C. Andraud, T. Brotin, C. Garcia, F. Pelle, P. Goldner, B. Bigot and A. Collet, J. Am. Chem. Soc., 116, 2094 (1994); https://doi.org/10.1021/ja00084a055
- V.M. Geskin, C. Lambert and J.L. Bredas, J. Am. Chem. Soc., 125, 15651 (2003); https://doi.org/10.1021/ja035862p
- M. Nakano, H. Fujita, M. Takahata and K. Yamaguchi, J. Am. Chem. Soc., 124, 9648 (2002); https://doi.org/10.1021/ja0115969
References
A.T. Proudfoot, Toxicol. Rev., 22, 3 (2003); https://doi.org/10.2165/00139709-200322010-00002
B.G. Reigner, R.A. Gungon, F.Y. Bois, L. Zeise and T.N. Tozer, J. Pharm. Sci., 81, 1113 (1992); https://doi.org/10.1002/jps.2600811115
M.S. Salkinoja-Salonen, P.J.M. Middeldorp, M. Briglia, R.J. Valo, M.M. Haggblom. A. McBain and J.H.A. Apajalahti. Adv. Appl. Biotechnol., 4, 347 (1989).
M.M. Laine and K.S. Jørgensen, Appl. Environ. Microbiol., 62, 1507 (1996); https://doi.org/10.1128/aem.62.5.1507-1513.1996
C.S. Orser and C.C. Lange, Biodegradation, 5, 277 (1994); https://doi.org/10.1007/BF00696465
M. Czaplicka, Sci. Total Environ., 322, 21 (2004); https://doi.org/10.1016/j.scitotenv.2003.09.015
P.V. Ramana Rao and G.R. Rao, Spectrochim. Acta A Mol. Biomol. Spectrosc., 58, 3039 (2002); https://doi.org/10.1016/S1386-1425(02)00101-4
P.V. Ramana Rao and G.R. Rao, Spectrochim. Acta A Mol. Biomol. Spectrosc., 58, 3205 (2002); https://doi.org/10.1016/S1386-1425(02)00102-6
K. Srishailam, B.V. Reddy and G.R. Rao, J. Mol. Struct., 1196, 139 (2019); https://doi.org/10.1016/j.molstruc.2019.06.064
K. Ramaiah, K. Srishailam, K.L. Reddy, B.V. Reddy and G.R. Rao, J. Mol. Struct., 1184, 405 (2019); https://doi.org/10.1016/j.molstruc.2019.02.060
K. Srishailam, P.V. Ramana Rao, L. Ravindranath, B.V. Reddy and G.R. Rao, J. Mol. Struct., 1178, 142 (2019); https://doi.org/10.1016/j.molstruc.2018.10.022
P.V. Ramana Rao, K. Srishailam, L. Ravindranath, B.V. Reddy and G.R. Rao, J. Mol. Struct., 1180, 665 (2019); https://doi.org/10.1016/j.molstruc.2018.12.036
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision B.01; Gaussian, Inc., Wallingford CT (2010).
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
C. Lee, W.T. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
K. Wolinski, R. Haacke, J.F. Hinton and P. Pulay, J. Comput. Chem., 18, 816 (1997); https://doi.org/10.1002/(SICI)1096-987X(19970430)18:6<816::AIDJCC7>3.0.CO;2-V
G. Scalmani and M.J. Frisch, J. Chem. Phys., 132, 114110 (2010); https://doi.org/10.1063/1.3359469
R. Improta, V. Barone, G. Scalmani and M.J. Frisch, J. Chem. Phys., 125, 054103 (2006); https://doi.org/10.1063/1.2222364
R. Improta, G. Scalmani, M.J. Frisch and V. Barone, J. Chem. Phys., 127, 074504 (2007); https://doi.org/10.1063/1.2757168
A.D. Buckingham, eds.: Joseph O. Hirschfelder, Permanent and Induced Molecular Moments and Long-Range Intermolecular Forces, In Advances in Chemical Physics: Intermolecular Forces, John Wiley & Sons, Inc., volume 12, p. 107 (1967).
D.A. McQuarrie, Thermodynamics, Harper and Row: New York (1973).
G. Gece, Corros. Sci., 50, 2981 (2008); https://doi.org/10.1016/j.corsci.2008.08.043
K. Fukui, Science, 218, 747 (1982); https://doi.org/10.1126/science.218.4574.747
T. Koopmans, Physica, 1, 104 (1933); https://doi.org/10.1016/S0031-8914(34)90011-2
R.G. Parr, L.V. Szentpa’ly and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999); https://doi.org/10.1021/ja983494x
N. Özdemir, B. Eren, M. Dincer and Y. Bekdemir, Mol. Phys., 108, 13 (2010); https://doi.org/10.1080/00268970903476688
P. Politzer and J.S. Murray, Theor. Chem. Acc., 108, 134 (2002); https://doi.org/10.1007/s00214-002-0363-9
A.E. Reed, L.A. Curtiss and F. Weinhold, Chem. Rev., 88, 899 (1988); https://doi.org/10.1021/cr00088a005
J. Chocholoušová, V. Špirko and P. Hobza, Phys. Chem. Chem. Phys., 6, 37 (2004); https://doi.org/10.1039/B314148A
C. Andraud, T. Brotin, C. Garcia, F. Pelle, P. Goldner, B. Bigot and A. Collet, J. Am. Chem. Soc., 116, 2094 (1994); https://doi.org/10.1021/ja00084a055
V.M. Geskin, C. Lambert and J.L. Bredas, J. Am. Chem. Soc., 125, 15651 (2003); https://doi.org/10.1021/ja035862p
M. Nakano, H. Fujita, M. Takahata and K. Yamaguchi, J. Am. Chem. Soc., 124, 9648 (2002); https://doi.org/10.1021/ja0115969