Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Photoelectrochemical Activity of TiO2 Nanotube Based Free Standing Membrane
Corresponding Author(s) : Misriyani
Asian Journal of Chemistry,
Vol. 32 No. 11 (2020): Vol 32 Issue 11
Abstract
TiO2 nanotubes (TNTs) were synthesized and modified using the anodization method in a glycerol and ammonium fluoride solution, which was followed by a thermal treatment. The second anodisation was continued by increasing anodizing voltage to deposit a film on the surface of titanium, which resulted in a free standing membrane based on of TNTs. The nanotubes were further characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. The SEM result showed that the layer thickness of free standing membrane based on TNTs increased with an increase in the anodizing voltage; however, at high voltages, this layer was damaged. The XRD and FTIR results indicated the generation of TNT having an anatase crystal phase. The results of test for photoelectrochemical properties showed that the optimal conditions of anodizing voltage was 50 V maintained for 1 h.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Wei and G. Amaratunga, Int. J. Electrochem. Sci., 2, 897 (2007).
- X. Pan, Q. Xie, W. Chen, G. Zhuang, X. Zhong and J.J. Wang, Int. J. Hydrogen Energy, 38, 2095 (2013); https://doi.org/10.1016/j.ijhydene.2012.11.115
- Misriyani, A.W. Wahab, P. Taba and J. Gunlazuardi, Int. J. Appl. Chem., 11, 611 (2015).
- L. Li, Z. Zhou, J. Lei, J. He, S. Zhang and F. Pan, Appl. Surf. Sci., 258, 3647 (2012); https://doi.org/10.1016/j.apsusc.2011.11.131
- J. Kapusta-Kolodziej, O. Tynkevych, A. Pawlik, M. Jarosz, J. Mech and G.D. Sulka, Electrochim. Acta, 144, 127 (2014); https://doi.org/10.1016/j.electacta.2014.08.055
- G. Liu, T. Chen, Y. Sun, G. Chen and K. Wang, Appl. Surf. Sci., 311, 529 (2014); https://doi.org/10.1016/j.apsusc.2014.05.104
- R. Liu, W.D. Yang, L.S. Qiang and J.F. Wu, Thin Solid Films, 519, 6459 (2011); https://doi.org/10.1016/j.tsf.2011.04.231
- Ratnawati, J. Gunlazuardi, E.L. Dewi and Slamet, Int. J. Hydrogen Energy, 39, 16927 (2014); https://doi.org/10.1016/j.ijhydene.2014.07.178
- A.M.D. Fornari, M.B. de Araujo, C.B. Duarte, G. Machado, S.R. Teixeira and D.E. Weibel, Int. J. Hydrogen Energy, 41, 11599 (2016); https://doi.org/10.1016/j.ijhydene.2016.02.055
- A. Robin, M.B. de Almeida Ribeiro, J.L. Rosa, R.Z. Nakazato and M.B. Silva, J. Surf. Eng. Mater. Adv. Technol., 04, 123 (2014); https://doi.org/10.4236/jsemat.2014.43016
- A.-K. M.A. Alsamuraee, Q.M.D. Al-Ittabi and Y.A. Mohammed, Am. J. Sci. Ind. Res., 2, 852 (2011).
- M. Nischk, P. Mazierski, M. Gazda and A. Zaleska, Appl. Catal. B, 144, 674 (2014); https://doi.org/10.1016/j.apcatb.2013.07.041
- J. Zhang, R.G. Du, Z.Q. Lin, Y.F. Zhu, Y. Guo, H.Q. Qi, L. Xu and C.J. Lin, Electrochim. Acta, 83, 59 (2012); https://doi.org/10.1016/j.electacta.2012.07.120
- Misriyani, E.S. Kunarti and M. Yasuda, Indones. J. Chem., 15, 43 (2015); https://doi.org/10.22146/ijc.21222
- S. Bauer, A. Pittrof, H. Tsuchiya and P. Schmuki, Electrochem. Commun., 13, 538 (2011); https://doi.org/10.1016/j.elecom.2011.03.003
- A. Henegar and T. Gougousi, J. Solid State Sci. Technol., 4, 298 (2015); https://doi.org/10.1149/2.0041508jss
- H. Omidvar, S. Goodarzi, A. Seif and A.R. Azadmehr, Superlattices Microstruct., 50, 26 (2011); https://doi.org/10.1016/j.spmi.2011.04.006
References
D. Wei and G. Amaratunga, Int. J. Electrochem. Sci., 2, 897 (2007).
X. Pan, Q. Xie, W. Chen, G. Zhuang, X. Zhong and J.J. Wang, Int. J. Hydrogen Energy, 38, 2095 (2013); https://doi.org/10.1016/j.ijhydene.2012.11.115
Misriyani, A.W. Wahab, P. Taba and J. Gunlazuardi, Int. J. Appl. Chem., 11, 611 (2015).
L. Li, Z. Zhou, J. Lei, J. He, S. Zhang and F. Pan, Appl. Surf. Sci., 258, 3647 (2012); https://doi.org/10.1016/j.apsusc.2011.11.131
J. Kapusta-Kolodziej, O. Tynkevych, A. Pawlik, M. Jarosz, J. Mech and G.D. Sulka, Electrochim. Acta, 144, 127 (2014); https://doi.org/10.1016/j.electacta.2014.08.055
G. Liu, T. Chen, Y. Sun, G. Chen and K. Wang, Appl. Surf. Sci., 311, 529 (2014); https://doi.org/10.1016/j.apsusc.2014.05.104
R. Liu, W.D. Yang, L.S. Qiang and J.F. Wu, Thin Solid Films, 519, 6459 (2011); https://doi.org/10.1016/j.tsf.2011.04.231
Ratnawati, J. Gunlazuardi, E.L. Dewi and Slamet, Int. J. Hydrogen Energy, 39, 16927 (2014); https://doi.org/10.1016/j.ijhydene.2014.07.178
A.M.D. Fornari, M.B. de Araujo, C.B. Duarte, G. Machado, S.R. Teixeira and D.E. Weibel, Int. J. Hydrogen Energy, 41, 11599 (2016); https://doi.org/10.1016/j.ijhydene.2016.02.055
A. Robin, M.B. de Almeida Ribeiro, J.L. Rosa, R.Z. Nakazato and M.B. Silva, J. Surf. Eng. Mater. Adv. Technol., 04, 123 (2014); https://doi.org/10.4236/jsemat.2014.43016
A.-K. M.A. Alsamuraee, Q.M.D. Al-Ittabi and Y.A. Mohammed, Am. J. Sci. Ind. Res., 2, 852 (2011).
M. Nischk, P. Mazierski, M. Gazda and A. Zaleska, Appl. Catal. B, 144, 674 (2014); https://doi.org/10.1016/j.apcatb.2013.07.041
J. Zhang, R.G. Du, Z.Q. Lin, Y.F. Zhu, Y. Guo, H.Q. Qi, L. Xu and C.J. Lin, Electrochim. Acta, 83, 59 (2012); https://doi.org/10.1016/j.electacta.2012.07.120
Misriyani, E.S. Kunarti and M. Yasuda, Indones. J. Chem., 15, 43 (2015); https://doi.org/10.22146/ijc.21222
S. Bauer, A. Pittrof, H. Tsuchiya and P. Schmuki, Electrochem. Commun., 13, 538 (2011); https://doi.org/10.1016/j.elecom.2011.03.003
A. Henegar and T. Gougousi, J. Solid State Sci. Technol., 4, 298 (2015); https://doi.org/10.1149/2.0041508jss
H. Omidvar, S. Goodarzi, A. Seif and A.R. Azadmehr, Superlattices Microstruct., 50, 26 (2011); https://doi.org/10.1016/j.spmi.2011.04.006