Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Microwave-Assisted Transesterification of Kusum Oil: Parametric, Kinetic and Thermodynamic Studies
Corresponding Author(s) : Sheetal N. Nayak
Asian Journal of Chemistry,
Vol. 32 No. 11 (2020): Vol 32 Issue 11
Abstract
Microwave-assisted transesterification of non-edible oil to produce biodiesel is gaining attention due to lower heat loss as well as rapid conversion. In this study, esterified kusum oil as a feedstock was transesterified in the presence of Ba(OH)2. At 800 W microwave power and constant magnetic stirring the effect of important process parameters such as solvent methanol molar ratio, Ba(OH)2, temperature, and time on biodiesel yield were evaluated. The parametric study suggested that 9:1 M methanol, 65 ºC reaction temperature, 2.5 wt% Ba(OH)2 catalyst and 3.5 min of transesterification time gave close to 96% biodiesel yield. At the above conditions of methanol and catalyst, the reaction kinetics and thermodynamic study were performed using different time intervals. The microwave-assisted transesterification followed pseudo-first-order reaction rate with 34.57 kJ/mol K activation energy and 205664 min-1 frequency factor. The reduction in activation energy and increase in the frequency factor reveal the non-thermal effect associated with microwave heating. The thermodynamic properties evaluated using the Eyring equation suggests non-spontaneity and endothermic nature of transesterification.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.C. Gomes Filho, A.S. Peiter, W.R.O. Pimentel, J.I. Soletti, S.H.V. Carvalho and L. Meili, Ind. Crops Prod., 74, 767 (2015); https://doi.org/10.1016/j.indcrop.2015.06.013
- A.O. Esan, A.D. Adeyemi and S. Ganesan, J. Clean. Prod., 257, 120561 (2020); https://doi.org/10.1016/j.jclepro.2020.120561
- F.A. Ansari, M. Nasr, A. Guldhe, S.K. Gupta, I. Rawat and F. Bux, Sci. Total Environ., 704, 135259 (2020); https://doi.org/10.1016/j.scitotenv.2019.135259
- S. Kiwan and E. Al-Gharibeh, Renew. Energy, 147, 423 (2020); https://doi.org/10.1016/j.renene.2019.09.004
- E. Park, Renew. Sustain. Energy Rev., 79, 61 (2017); https://doi.org/10.1016/j.rser.2017.05.043
- S. Mirzamohammadi, A. Jabarzadeh and M.S. Shahrabi, J. Clean. Prod., 264, 121611 (2020); https://doi.org/10.1016/j.jclepro.2020.121611
- L. Gu, W. Huang, S. Tang, S. Tian and X. Zhang, Chem. Eng. J., 259, 647 (2015); https://doi.org/10.1016/j.cej.2014.08.026
- A.B. Fadhil, A.M. Aziz and M.H. Al-Tamer, Energy Convers. Manage., 108, 255 (2016); https://doi.org/10.1016/j.enconman.2015.11.013
- Y. Essamlali, O. Amadine, A. Fihri and M. Zahouily, Renew. Energy, 133, 1295 (2019); https://doi.org/10.1016/j.renene.2018.08.103
- H. Trinh, S. Yusup and Y. Uemura, Bioresour. Technol., 247, 51 (2018); https://doi.org/10.1016/j.biortech.2017.09.075
- M.G. Nayak and A.P. Vyas, Renew. Energy, 138, 18 (2019); https://doi.org/10.1016/j.renene.2019.01.054
- O. Ogunkunle and N.A. Ahmed, Energy Rep., 5, 1560 (2019); https://doi.org/10.1016/j.egyr.2019.10.028
- S.N. Nayak, C.P. Bhasin and M.G. Nayak, Renew. Energy, 143, 1366 (2019); https://doi.org/10.1016/j.renene.2019.05.056
- S.P. Yeong, M.C. Law, K.Y. You and Y.S. Chan, Appl. Energy, 237, 457 (2019); https://doi.org/10.1016/j.apenergy.2019.01.052
- N.N. Saimon, S. Thavil, M. Jusoh, N. Ngadi and Z.Y. Zakaria, Chem. Eng. Trans., 63, 463 (2018); https://doi.org/10.3303/CET1863078
- V.B. Chaudhari and S.U. Patel, Indian J. Appl. Res., 4, 15 (2011); https://doi.org/10.15373/2249555X/FEB2014/59
- A.Z. Merlin, O.A. Marcel, A.O. Louis Max, C. Salem and G. Jean, Renew. Sustain. Energy Rev., 52, 201 (2015); https://doi.org/10.1016/j.rser.2015.07.027
- M.Y. Koh and T.I. Mohd, Renew. Sustain. Energy Rev., 15, 2240 (2011); https://doi.org/10.1016/j.rser.2011.02.013
- J.C. Juan, D.A. Kartika, T.Y. Wu and T.-Y.Y. Hin, Bioresour. Technol., 102, 452 (2011); https://doi.org/10.1016/j.biortech.2010.09.093
- N. Kumar, A.S. Singh, S. Kumari and M.P. Reddy, Ind. Crops Prod., 76, 817 (2015); https://doi.org/10.1016/j.indcrop.2015.07.028
- K.P. Prajapati, P. Shilpkar and M.C. Shah, J. Sci. Ind. Res., 74, 494 (2015).
- S.V. Ghadge and H. Raheman, Biomass Bioenergy, 28, 601 (2005); https://doi.org/10.1016/j.biombioe.2004.11.009
- W.-J. Lee, M.-H. Lee and N.-W. Su, J. Sci. Food Agric., 91, 2348 (2011); https://doi.org/10.1002/jsfa.4466
- A. Ramadhas, S. Jayaraj and C. Muraleedharan, Fuel, 84, 335 (2005); https://doi.org/10.1016/j.fuel.2004.09.016
- S.E. Onoji, S.E. Iyuke, A.I. Igbafe and D.B. Nkazi, Energy Convers. Manage., 110, 125 (2016); https://doi.org/10.1016/j.enconman.2015.12.002
- P. Verma and M.P. Sharma, Fuel, 180, 164 (2016); https://doi.org/10.1016/j.fuel.2016.04.035
- V. Singh, B.H. Hameed and Y.C. Sharma, Energy Convers. Manage., 122, 52 (2016); https://doi.org/10.1016/j.enconman.2016.05.030
- L.C. Meher, V.S.S. Dharmagadda and S.N. Naik, Bioresour. Technol., 97, 1392 (2006); https://doi.org/10.1016/j.biortech.2005.07.003
- H.M. Amaro, A.C. Guedes and F.X. Malcata, Appl. Energy, 88, 3402 (2011); https://doi.org/10.1016/j.apenergy.2010.12.014
- J. Huang, J. Xia, W. Jiang, Y. Li and J. Li, Bioresour. Technol., 180, 47 (2015); https://doi.org/10.1016/j.biortech.2014.12.072
- M.K. Lam and K.T. Lee, Biotechnol. Adv., 30, 673 (2012); https://doi.org/10.1016/j.biotechadv.2011.11.008
- A.S. Silitonga, H.H. Masjuki, T.M.I. Mahlia, H.C. Ong, F. Kusumo, H.B. Aditiya and N.N.N. Ghazali, Fuel, 156, 63 (2015); https://doi.org/10.1016/j.fuel.2015.04.046
- N. Kumar and M. Tomar, Int. J. Energy Res., 43, 3223 (2019); https://doi.org/10.1002/er.4446
- T.P. Mall and S.C. Tripathi, World J. Pharm. Res., 6, 463 (2017); https://doi.org/10.20959/wjpr20174-8082
- M. Yadav and Y.C. Sharma, J. Clean. Prod., 199, 593 (2018); https://doi.org/10.1016/j.jclepro.2018.07.052
- H. Bhatia, J. Kaur, S. Nandi, V. Gurnani, A. Chowdhury, P.H. Reddy, A. Vashishtha and B. Rathi, J. Pharm. Res., 6, 224 (2013); https://doi.org/10.1016/j.jopr.2012.11.003
- N.P. Asri, Y. Yuniati, H. Hindarso, N. Hidayat, I. Siswa, D.A. Puspitasari and S. Suprapto, IOP Conf. Ser. Earth Environ. Sci., 460, 012033 (2020); https://doi.org/10.1088/1755-1315/460/1/012033
- S. Sahani, S. Banerjee and Y.C. Sharma, J. Taiwan Inst. Chem. Eng., 86, 42 (2018); https://doi.org/10.1016/j.jtice.2018.01.029
- N.E. Leadbeater, Organic Synthesis Using Microwave Heating, In: Comprehensive Organic Synthesis II, Elsevier, pp. 234-286 (2014).
- Y.-C. Lin, S.-C. Chen, C.-E. Chen, P.-M. Yang and S.-R. Jhang, Fuel, 135, 435 (2014); https://doi.org/10.1016/j.fuel.2014.07.023
- P.D. Patil, V.G. Gude, A. Mannarswamy, P. Cooke, S. Munson-McGee, N. Nirmalakhandan, P. Lammers and S. Deng, Bioresour. Technol., 102, 1399 (2011); https://doi.org/10.1016/j.biortech.2010.09.046
- M. Mehdizadeh, The Impact of Fields on Materials at Microwave and Radio Frequencies, In: Microwave/RF Applicators and Probes for Material Heating, Sensing, and Plasma Generation, Elsevier, pp. 1-33 (2015).
- D. Bogdal, ed.: D. Bogdal, Interaction of Microwaves with Different Materials, In: Microwave Assisted Organic Synthesis, Elsevier, Chap. 1, pp. 1–11 (2005).
- B.G. Terigar, S. Balasubramanian, M. Lima and D. Boldor, Energy Fuels, 24, 6609 (2010); https://doi.org/10.1021/ef1011929
- L. Perreux and A. Loupy, Tetrahedron, 57, 9199 (2001); https://doi.org/10.1016/S0040-4020(01)00905-X
- M.S.A. Farabi, M.L. Ibrahim, U. Rashid and Y.H. Taufiq-Yap, Energy Convers. Manage., 181, 562 (2019); https://doi.org/10.1016/j.enconman.2018.12.033
- Y. Uemura, F. Yee Han, T. Tien Nguyen, T. Hoai Trinh and K. Kusakabe, Mater. Today Proc., 5, 22118 (2018); https://doi.org/10.1016/j.matpr.2018.07.078
- M. Agarwal, G. Chauhan, S.P. Chaurasia and K. Singh, J. Taiwan Inst. Chem. Eng., 43, 89 (2012); https://doi.org/10.1016/j.jtice.2011.06.003
- Y.-C. Lin, K.-H. Hsu and J.-F. Lin, Fuel, 115, 306 (2014); https://doi.org/10.1016/j.fuel.2013.07.022
- A. Cancela, R. Maceiras, S. Urrejola and A. Sanchez, Energies, 5, 862 (2012); https://doi.org/10.3390/en5040862
- A. Talebian-Kiakalaieh, N.A.S. Amin, A. Zarei and I. Noshadi, Appl. Energy, 102, 283 (2013); https://doi.org/10.1016/j.apenergy.2012.07.018
- E. Martinez-Guerra, V.G. Gude, A. Mondala, W. Holmes and R. Hernandez, Appl. Energy, 129, 354 (2014); https://doi.org/10.1016/j.apenergy.2014.04.112
- B. Likozar and J. Levec, Fuel Process. Technol., 122, 30 (2014); https://doi.org/10.1016/j.fuproc.2014.01.017
- G. Silva, F. Camargo and A. Ferreira, Fuel Process. Technol., 92, 407 (2011); https://doi.org/10.1016/j.fuproc.2010.10.002
- W. Ye, Y. Gao, H. Ding, M. Liu, S. Liu, X. Han and J. Qi, Fuel, 180, 574 (2016); https://doi.org/10.1016/j.fuel.2016.04.084
- O. Levenspiel, Chemical Reaction Engineering, Wiley: New York, edn 3 (1999).
- N. Narkhede and A. Patel, Ind. Eng. Chem. Res., 52, 13637 (2013); https://doi.org/10.1021/ie402230v
- P. Binnal, A. Amruth, M.P. Basawaraj, T.S. Chethan, K.R.S. Murthy and S. Rajashekhara, Indian Chem. Eng., (2020) (In press); https://doi.org/10.1080/00194506.2020.1748124
- V. Gude, P. Patil, E. Martinez-Guerra, S. Deng and N. Nirmalakhandan, Sustain. Chem. Process., 1, 5 (2013); https://doi.org/10.1186/2043-7129-1-5
- N.Y. Yahya, N. Ngadi, S. Wong and O. Hassan, Energy Convers. Manage., 164, 210 (2018); https://doi.org/10.1016/j.enconman.2018.03.011
- G.R. Kumar, R. Ravi and A. Chadha, Energy Fuels, 25, 2826 (2011); https://doi.org/10.1021/ef200469u
- A. Sharma, P. Kodgire and S.S. Kachhwaha, Renew. Sustain. Energy Rev., 116, 109394 (2019); https://doi.org/10.1016/j.rser.2019.109394
- P. Patil, H. Reddy, T. Muppaneni, S. Ponnusamy, Y. Sun, P. Dailey, P. Cooke, U. Patil and S. Deng, Bioresour. Technol., 137, 278 (2013); https://doi.org/10.1016/j.biortech.2013.03.118
- S. Nomanbhay and M. Ong, Bioengineering, 4, 57 (2017); https://doi.org/10.3390/bioengineering4020057
- D. Zeng, L. Yang and T. Fang, Fuel, 203, 739 (2017); https://doi.org/10.1016/j.fuel.2017.05.019
- D. Kusdiana and S. Saka, Fuel, 80, 693 (2001); https://doi.org/10.1016/S0016-2361(00)00140-X
- D.A. Lewis, J.D. Summers, T.C. Ward and J.E. McGrath, J. Polym. Sci. Part Polym. Chem., 30, 1647 (1992); https://doi.org/10.1002/pola.1992.080300817
- P. Mazo, L. Rios, D. Estenoz and M. Sponton, Chem. Eng. J., 185– 186, 347 (2012); https://doi.org/10.1016/j.cej.2012.01.099
- M.-C. Hsiao, P.-H. Liao and L.-W. Chang, Adv. Environ. Res., 1, 191 (2012); https://doi.org/10.12989/aer.2012.1.3.191
- P. Mazo, D. Estenoz, M. Sponton and L. Rios, J. Am. Oil Chem. Soc., 89, 1355 (2012); https://doi.org/10.1007/s11746-012-2020-3
- H. Eyring, J. Chem. Phys., 3, 107 (1935); https://doi.org/10.1063/1.1749604
- L.M. Surhone, M.T. Timpledon and S.F. Marseken, Eyring Equation, Betascript Publishing (2010).
- Á. DíazOrtiz, P. Prieto and A. delaHoz, Chem. Rec., 19, 85 (2019); https://doi.org/10.1002/tcr.201800059
- M.G. Nayak and A.P. Vyas, Asian J. Chem., 31, 1688 (2019); https://doi.org/10.14233/ajchem.2019.21943
- M. Barekati-Goudarzi, P.D. Muley, A. Clarens, D.B. Nde and D. Boldor, Biomass Bioenergy, 107, 353 (2017); https://doi.org/10.1016/j.biombioe.2017.09.006
- H. Hindarso, Am. J. Chem. Eng., 6, 54 (2018); https://doi.org/10.11648/j.ajche.20180604.13
- M. Mahfud, A. Suryanto, L. Qadariyah, S. Suprapto and H.S. Kusuma, Korean Chem. Eng. Res., 56, 275 (2018); https://doi.org/10.9713/kcer.2018.56.2.275
- A. Kanitkar, S. Balasubramanian, M. Lima and D. Boldor, Bioresour. Technol., 102, 7896 (2011); https://doi.org/10.1016/j.biortech.2011.05.091
- M.A. Hashim, Proceedings of the International Conference on Global Sustainability and Chemical Engineering, ICGSCE 2014 (2015).
- S.M. Hailegiorgis, S. Mahadzir and D. Subbarao, Biomass Bioenergy, 49, 63 (2013); https://doi.org/10.1016/j.biombioe.2012.12.003
- K.Y. Nandiwale and V.V. Bokade, Ind. Eng. Chem. Res., 53, 18690 (2014); https://doi.org/10.1021/ie500672v
- P. Patil, V.G. Gude, S. Pinappu and S. Deng, Chem. Eng. J., 168, 1296 (2011); https://doi.org/10.1016/j.cej.2011.02.030
- T. Roy, S. Sahani, D. Madhu and Y.C. Sharma, J. Clean. Prod., 265, 121440 (2020); https://doi.org/10.1016/j.jclepro.2020.121440
- L. Wu, T. Wei, Z. Lin, Y. Zou, Z. Tong and J. Sun, Fuel, 182, 920 (2016); https://doi.org/10.1016/j.fuel.2016.05.065
- N. Kaur and A. Ali, RSC Adv., 4, 43671 (2014); https://doi.org/10.1039/C4RA07178F
- Y. Mani, T. Devaraj and K. Devaraj, S.A.A. Rawoof and S. Subramanian, Environ. Sci. Pollut. Res., 27, 36450 (2020); https://doi.org/10.1007/s11356-020-09626-y
- J.M. Encinar, A. Pardal and N. Sánchez, Fuel, 166, 51 (2016); https://doi.org/10.1016/j.fuel.2015.10.110
- A.N. Sarve, M.N. Varma and S.S. Sonawane, Ultrason. Sonochem., 29, 288 (2016); https://doi.org/10.1016/j.ultsonch.2015.09.016
- S. Sahani, T. Roy and Y.C. Sharma, Energy Convers. Manage., 203, 112180 (2020); https://doi.org/10.1016/j.enconman.2019.112180
- P. Nautiyal, K.A. Subramanian and M.G. Dastidar, Fuel, 135, 228 (2014); https://doi.org/10.1016/j.fuel.2014.06.063
- L.K. Ong, A. Kurniawan, A.C. Suwandi, C.X. Lin, X.S. Zhao and S. Ismadji, J. Supercrit. Fluids, 75, 11 (2013); https://doi.org/10.1016/j.supflu.2012.12.018
References
J.C. Gomes Filho, A.S. Peiter, W.R.O. Pimentel, J.I. Soletti, S.H.V. Carvalho and L. Meili, Ind. Crops Prod., 74, 767 (2015); https://doi.org/10.1016/j.indcrop.2015.06.013
A.O. Esan, A.D. Adeyemi and S. Ganesan, J. Clean. Prod., 257, 120561 (2020); https://doi.org/10.1016/j.jclepro.2020.120561
F.A. Ansari, M. Nasr, A. Guldhe, S.K. Gupta, I. Rawat and F. Bux, Sci. Total Environ., 704, 135259 (2020); https://doi.org/10.1016/j.scitotenv.2019.135259
S. Kiwan and E. Al-Gharibeh, Renew. Energy, 147, 423 (2020); https://doi.org/10.1016/j.renene.2019.09.004
E. Park, Renew. Sustain. Energy Rev., 79, 61 (2017); https://doi.org/10.1016/j.rser.2017.05.043
S. Mirzamohammadi, A. Jabarzadeh and M.S. Shahrabi, J. Clean. Prod., 264, 121611 (2020); https://doi.org/10.1016/j.jclepro.2020.121611
L. Gu, W. Huang, S. Tang, S. Tian and X. Zhang, Chem. Eng. J., 259, 647 (2015); https://doi.org/10.1016/j.cej.2014.08.026
A.B. Fadhil, A.M. Aziz and M.H. Al-Tamer, Energy Convers. Manage., 108, 255 (2016); https://doi.org/10.1016/j.enconman.2015.11.013
Y. Essamlali, O. Amadine, A. Fihri and M. Zahouily, Renew. Energy, 133, 1295 (2019); https://doi.org/10.1016/j.renene.2018.08.103
H. Trinh, S. Yusup and Y. Uemura, Bioresour. Technol., 247, 51 (2018); https://doi.org/10.1016/j.biortech.2017.09.075
M.G. Nayak and A.P. Vyas, Renew. Energy, 138, 18 (2019); https://doi.org/10.1016/j.renene.2019.01.054
O. Ogunkunle and N.A. Ahmed, Energy Rep., 5, 1560 (2019); https://doi.org/10.1016/j.egyr.2019.10.028
S.N. Nayak, C.P. Bhasin and M.G. Nayak, Renew. Energy, 143, 1366 (2019); https://doi.org/10.1016/j.renene.2019.05.056
S.P. Yeong, M.C. Law, K.Y. You and Y.S. Chan, Appl. Energy, 237, 457 (2019); https://doi.org/10.1016/j.apenergy.2019.01.052
N.N. Saimon, S. Thavil, M. Jusoh, N. Ngadi and Z.Y. Zakaria, Chem. Eng. Trans., 63, 463 (2018); https://doi.org/10.3303/CET1863078
V.B. Chaudhari and S.U. Patel, Indian J. Appl. Res., 4, 15 (2011); https://doi.org/10.15373/2249555X/FEB2014/59
A.Z. Merlin, O.A. Marcel, A.O. Louis Max, C. Salem and G. Jean, Renew. Sustain. Energy Rev., 52, 201 (2015); https://doi.org/10.1016/j.rser.2015.07.027
M.Y. Koh and T.I. Mohd, Renew. Sustain. Energy Rev., 15, 2240 (2011); https://doi.org/10.1016/j.rser.2011.02.013
J.C. Juan, D.A. Kartika, T.Y. Wu and T.-Y.Y. Hin, Bioresour. Technol., 102, 452 (2011); https://doi.org/10.1016/j.biortech.2010.09.093
N. Kumar, A.S. Singh, S. Kumari and M.P. Reddy, Ind. Crops Prod., 76, 817 (2015); https://doi.org/10.1016/j.indcrop.2015.07.028
K.P. Prajapati, P. Shilpkar and M.C. Shah, J. Sci. Ind. Res., 74, 494 (2015).
S.V. Ghadge and H. Raheman, Biomass Bioenergy, 28, 601 (2005); https://doi.org/10.1016/j.biombioe.2004.11.009
W.-J. Lee, M.-H. Lee and N.-W. Su, J. Sci. Food Agric., 91, 2348 (2011); https://doi.org/10.1002/jsfa.4466
A. Ramadhas, S. Jayaraj and C. Muraleedharan, Fuel, 84, 335 (2005); https://doi.org/10.1016/j.fuel.2004.09.016
S.E. Onoji, S.E. Iyuke, A.I. Igbafe and D.B. Nkazi, Energy Convers. Manage., 110, 125 (2016); https://doi.org/10.1016/j.enconman.2015.12.002
P. Verma and M.P. Sharma, Fuel, 180, 164 (2016); https://doi.org/10.1016/j.fuel.2016.04.035
V. Singh, B.H. Hameed and Y.C. Sharma, Energy Convers. Manage., 122, 52 (2016); https://doi.org/10.1016/j.enconman.2016.05.030
L.C. Meher, V.S.S. Dharmagadda and S.N. Naik, Bioresour. Technol., 97, 1392 (2006); https://doi.org/10.1016/j.biortech.2005.07.003
H.M. Amaro, A.C. Guedes and F.X. Malcata, Appl. Energy, 88, 3402 (2011); https://doi.org/10.1016/j.apenergy.2010.12.014
J. Huang, J. Xia, W. Jiang, Y. Li and J. Li, Bioresour. Technol., 180, 47 (2015); https://doi.org/10.1016/j.biortech.2014.12.072
M.K. Lam and K.T. Lee, Biotechnol. Adv., 30, 673 (2012); https://doi.org/10.1016/j.biotechadv.2011.11.008
A.S. Silitonga, H.H. Masjuki, T.M.I. Mahlia, H.C. Ong, F. Kusumo, H.B. Aditiya and N.N.N. Ghazali, Fuel, 156, 63 (2015); https://doi.org/10.1016/j.fuel.2015.04.046
N. Kumar and M. Tomar, Int. J. Energy Res., 43, 3223 (2019); https://doi.org/10.1002/er.4446
T.P. Mall and S.C. Tripathi, World J. Pharm. Res., 6, 463 (2017); https://doi.org/10.20959/wjpr20174-8082
M. Yadav and Y.C. Sharma, J. Clean. Prod., 199, 593 (2018); https://doi.org/10.1016/j.jclepro.2018.07.052
H. Bhatia, J. Kaur, S. Nandi, V. Gurnani, A. Chowdhury, P.H. Reddy, A. Vashishtha and B. Rathi, J. Pharm. Res., 6, 224 (2013); https://doi.org/10.1016/j.jopr.2012.11.003
N.P. Asri, Y. Yuniati, H. Hindarso, N. Hidayat, I. Siswa, D.A. Puspitasari and S. Suprapto, IOP Conf. Ser. Earth Environ. Sci., 460, 012033 (2020); https://doi.org/10.1088/1755-1315/460/1/012033
S. Sahani, S. Banerjee and Y.C. Sharma, J. Taiwan Inst. Chem. Eng., 86, 42 (2018); https://doi.org/10.1016/j.jtice.2018.01.029
N.E. Leadbeater, Organic Synthesis Using Microwave Heating, In: Comprehensive Organic Synthesis II, Elsevier, pp. 234-286 (2014).
Y.-C. Lin, S.-C. Chen, C.-E. Chen, P.-M. Yang and S.-R. Jhang, Fuel, 135, 435 (2014); https://doi.org/10.1016/j.fuel.2014.07.023
P.D. Patil, V.G. Gude, A. Mannarswamy, P. Cooke, S. Munson-McGee, N. Nirmalakhandan, P. Lammers and S. Deng, Bioresour. Technol., 102, 1399 (2011); https://doi.org/10.1016/j.biortech.2010.09.046
M. Mehdizadeh, The Impact of Fields on Materials at Microwave and Radio Frequencies, In: Microwave/RF Applicators and Probes for Material Heating, Sensing, and Plasma Generation, Elsevier, pp. 1-33 (2015).
D. Bogdal, ed.: D. Bogdal, Interaction of Microwaves with Different Materials, In: Microwave Assisted Organic Synthesis, Elsevier, Chap. 1, pp. 1–11 (2005).
B.G. Terigar, S. Balasubramanian, M. Lima and D. Boldor, Energy Fuels, 24, 6609 (2010); https://doi.org/10.1021/ef1011929
L. Perreux and A. Loupy, Tetrahedron, 57, 9199 (2001); https://doi.org/10.1016/S0040-4020(01)00905-X
M.S.A. Farabi, M.L. Ibrahim, U. Rashid and Y.H. Taufiq-Yap, Energy Convers. Manage., 181, 562 (2019); https://doi.org/10.1016/j.enconman.2018.12.033
Y. Uemura, F. Yee Han, T. Tien Nguyen, T. Hoai Trinh and K. Kusakabe, Mater. Today Proc., 5, 22118 (2018); https://doi.org/10.1016/j.matpr.2018.07.078
M. Agarwal, G. Chauhan, S.P. Chaurasia and K. Singh, J. Taiwan Inst. Chem. Eng., 43, 89 (2012); https://doi.org/10.1016/j.jtice.2011.06.003
Y.-C. Lin, K.-H. Hsu and J.-F. Lin, Fuel, 115, 306 (2014); https://doi.org/10.1016/j.fuel.2013.07.022
A. Cancela, R. Maceiras, S. Urrejola and A. Sanchez, Energies, 5, 862 (2012); https://doi.org/10.3390/en5040862
A. Talebian-Kiakalaieh, N.A.S. Amin, A. Zarei and I. Noshadi, Appl. Energy, 102, 283 (2013); https://doi.org/10.1016/j.apenergy.2012.07.018
E. Martinez-Guerra, V.G. Gude, A. Mondala, W. Holmes and R. Hernandez, Appl. Energy, 129, 354 (2014); https://doi.org/10.1016/j.apenergy.2014.04.112
B. Likozar and J. Levec, Fuel Process. Technol., 122, 30 (2014); https://doi.org/10.1016/j.fuproc.2014.01.017
G. Silva, F. Camargo and A. Ferreira, Fuel Process. Technol., 92, 407 (2011); https://doi.org/10.1016/j.fuproc.2010.10.002
W. Ye, Y. Gao, H. Ding, M. Liu, S. Liu, X. Han and J. Qi, Fuel, 180, 574 (2016); https://doi.org/10.1016/j.fuel.2016.04.084
O. Levenspiel, Chemical Reaction Engineering, Wiley: New York, edn 3 (1999).
N. Narkhede and A. Patel, Ind. Eng. Chem. Res., 52, 13637 (2013); https://doi.org/10.1021/ie402230v
P. Binnal, A. Amruth, M.P. Basawaraj, T.S. Chethan, K.R.S. Murthy and S. Rajashekhara, Indian Chem. Eng., (2020) (In press); https://doi.org/10.1080/00194506.2020.1748124
V. Gude, P. Patil, E. Martinez-Guerra, S. Deng and N. Nirmalakhandan, Sustain. Chem. Process., 1, 5 (2013); https://doi.org/10.1186/2043-7129-1-5
N.Y. Yahya, N. Ngadi, S. Wong and O. Hassan, Energy Convers. Manage., 164, 210 (2018); https://doi.org/10.1016/j.enconman.2018.03.011
G.R. Kumar, R. Ravi and A. Chadha, Energy Fuels, 25, 2826 (2011); https://doi.org/10.1021/ef200469u
A. Sharma, P. Kodgire and S.S. Kachhwaha, Renew. Sustain. Energy Rev., 116, 109394 (2019); https://doi.org/10.1016/j.rser.2019.109394
P. Patil, H. Reddy, T. Muppaneni, S. Ponnusamy, Y. Sun, P. Dailey, P. Cooke, U. Patil and S. Deng, Bioresour. Technol., 137, 278 (2013); https://doi.org/10.1016/j.biortech.2013.03.118
S. Nomanbhay and M. Ong, Bioengineering, 4, 57 (2017); https://doi.org/10.3390/bioengineering4020057
D. Zeng, L. Yang and T. Fang, Fuel, 203, 739 (2017); https://doi.org/10.1016/j.fuel.2017.05.019
D. Kusdiana and S. Saka, Fuel, 80, 693 (2001); https://doi.org/10.1016/S0016-2361(00)00140-X
D.A. Lewis, J.D. Summers, T.C. Ward and J.E. McGrath, J. Polym. Sci. Part Polym. Chem., 30, 1647 (1992); https://doi.org/10.1002/pola.1992.080300817
P. Mazo, L. Rios, D. Estenoz and M. Sponton, Chem. Eng. J., 185– 186, 347 (2012); https://doi.org/10.1016/j.cej.2012.01.099
M.-C. Hsiao, P.-H. Liao and L.-W. Chang, Adv. Environ. Res., 1, 191 (2012); https://doi.org/10.12989/aer.2012.1.3.191
P. Mazo, D. Estenoz, M. Sponton and L. Rios, J. Am. Oil Chem. Soc., 89, 1355 (2012); https://doi.org/10.1007/s11746-012-2020-3
H. Eyring, J. Chem. Phys., 3, 107 (1935); https://doi.org/10.1063/1.1749604
L.M. Surhone, M.T. Timpledon and S.F. Marseken, Eyring Equation, Betascript Publishing (2010).
Á. DíazOrtiz, P. Prieto and A. delaHoz, Chem. Rec., 19, 85 (2019); https://doi.org/10.1002/tcr.201800059
M.G. Nayak and A.P. Vyas, Asian J. Chem., 31, 1688 (2019); https://doi.org/10.14233/ajchem.2019.21943
M. Barekati-Goudarzi, P.D. Muley, A. Clarens, D.B. Nde and D. Boldor, Biomass Bioenergy, 107, 353 (2017); https://doi.org/10.1016/j.biombioe.2017.09.006
H. Hindarso, Am. J. Chem. Eng., 6, 54 (2018); https://doi.org/10.11648/j.ajche.20180604.13
M. Mahfud, A. Suryanto, L. Qadariyah, S. Suprapto and H.S. Kusuma, Korean Chem. Eng. Res., 56, 275 (2018); https://doi.org/10.9713/kcer.2018.56.2.275
A. Kanitkar, S. Balasubramanian, M. Lima and D. Boldor, Bioresour. Technol., 102, 7896 (2011); https://doi.org/10.1016/j.biortech.2011.05.091
M.A. Hashim, Proceedings of the International Conference on Global Sustainability and Chemical Engineering, ICGSCE 2014 (2015).
S.M. Hailegiorgis, S. Mahadzir and D. Subbarao, Biomass Bioenergy, 49, 63 (2013); https://doi.org/10.1016/j.biombioe.2012.12.003
K.Y. Nandiwale and V.V. Bokade, Ind. Eng. Chem. Res., 53, 18690 (2014); https://doi.org/10.1021/ie500672v
P. Patil, V.G. Gude, S. Pinappu and S. Deng, Chem. Eng. J., 168, 1296 (2011); https://doi.org/10.1016/j.cej.2011.02.030
T. Roy, S. Sahani, D. Madhu and Y.C. Sharma, J. Clean. Prod., 265, 121440 (2020); https://doi.org/10.1016/j.jclepro.2020.121440
L. Wu, T. Wei, Z. Lin, Y. Zou, Z. Tong and J. Sun, Fuel, 182, 920 (2016); https://doi.org/10.1016/j.fuel.2016.05.065
N. Kaur and A. Ali, RSC Adv., 4, 43671 (2014); https://doi.org/10.1039/C4RA07178F
Y. Mani, T. Devaraj and K. Devaraj, S.A.A. Rawoof and S. Subramanian, Environ. Sci. Pollut. Res., 27, 36450 (2020); https://doi.org/10.1007/s11356-020-09626-y
J.M. Encinar, A. Pardal and N. Sánchez, Fuel, 166, 51 (2016); https://doi.org/10.1016/j.fuel.2015.10.110
A.N. Sarve, M.N. Varma and S.S. Sonawane, Ultrason. Sonochem., 29, 288 (2016); https://doi.org/10.1016/j.ultsonch.2015.09.016
S. Sahani, T. Roy and Y.C. Sharma, Energy Convers. Manage., 203, 112180 (2020); https://doi.org/10.1016/j.enconman.2019.112180
P. Nautiyal, K.A. Subramanian and M.G. Dastidar, Fuel, 135, 228 (2014); https://doi.org/10.1016/j.fuel.2014.06.063
L.K. Ong, A. Kurniawan, A.C. Suwandi, C.X. Lin, X.S. Zhao and S. Ismadji, J. Supercrit. Fluids, 75, 11 (2013); https://doi.org/10.1016/j.supflu.2012.12.018