Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Thermal and Antimicrobial Activity of Novel Organic Single Crystal of (E)-4-Bromo-2-[(phenylimino)methyl]phenol Compound
Corresponding Author(s) : R. Idamalarselvi
Asian Journal of Chemistry,
Vol. 32 No. 11 (2020): Vol 32 Issue 11
Abstract
This study focused on kinetic modelling of a specific type of multistep heterogeneous reaction comprising exothermic and endothermic reaction steps, as exemplified by the experimental kinetic curves for the thermal decomposition of (E)-4-bromo-2-[(phenylimino)methyl]-phenol (4B2PMP) crystal. The crystal was grown by a slow evaporation method. The cell parameters and crystalline perfection of the grown crystal were studied by single and powder X-ray diffractions. Thermal stability and phase change of 4B2PMP crystal were analyzed by TG/DTA. The microhardness study has revealed the soft nature. UV-visible analysis reveals the wide range of optical window of the optical transmission from 199 nm to 1100 nm. The bandgap of the crystal is found to be 3.24 eV. The FESEM of the crystals was spherically shaped and consisted of a core-shell structure with internal aggregates. The antimicrobial activity of title crystal was tested against different microorganisms by disc diffusion method. The results reveal that the title compound have effective antimicrobial activities.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Tan, Q. Wang, H. Zheng, W. Zhao, S. Zhang and Z. Liu, J. Phys. Chem. A, 115, 5517 (2011); https://doi.org/10.1021/jp203580r
- S. Vyazovkin and C.A. Wight, Chem. Mater., 11, 3386 (1999); https://doi.org/10.1021/cm9904382
- A.K. Galwey, J. Therm. Anal. Calorim., (2020) (In press); https://doi.org/10.1007/s10973-020-09461-w
- S.Vyazovkin, A.K. Burnham, L. Favergeon, N. Koga, E. Moukhina, L.A. Pérez-Maqueda and N. Sbirrazzuoli, Thermochim. Acta, 689, 178597 (2020); https://doi.org/10.1016/j.tca.2020.178597
- G. Sanders and P.K. Gallagher, Thermochim. Acta, 388, 115 (2002); https://doi.org/10.1016/S0040-6031(02)00032-1
- G. Garcia-Garrido, P.E. Sánchez-Jiménez, L.A. Pérez-Maqued, A. Perejón and J.M. Criado, Phys. Chem. Chem. Phys., 18, 29348 (2016); https://doi.org/10.1039/C6CP03677E
- X.-X. Yan, L.-P. Lu and M.-L. Zhu, Acta Cryst., E70, o853 (2014); https://doi.org/10.1107/S1600536814015268
- N.V. Muravyev, N. Koga, D.B. Meerov and A.N. Pivkina, Phys. Chem. Chem. Phys., 19, 3254 (2017); https://doi.org/10.1039/C6CP08218A
- M. Nakano, T. Wada and N. Koga, J. Phys. Chem. A, 119, 9761 (2015); https://doi.org/10.1021/acs.jpca.5b07044
- C.G. Hamaker, O.S. Maryashina, D.K. Daley and A.L.J. Wadler, Chem. Cryst., 40, 34 (2010); https://doi.org/10.1007/s10870-009-9601-5
- N. Dege, M.S.H. Faizi, O.E. Dogan, E. Agar and I.A. Golenya, Cryst. Commun., 75, 770 (2019); https://doi.org/10.1107/S205698901900642X
- S.-S. Qian, Y.-T. Ye, J.-Q. Ren, Z. You and H.-L. Zhu, Synth. React. Inorg. Met.-Org. Nano-Metal Chem., 46, 1220 (2016); https://doi.org/10.1080/15533174.2015.1004449
- S. Leela, T.D. Rani, A. Subashini, S. Brindha, R.R. Babu and K. Ramamurthi, Arab. J. Chem., 10, S3974 (2017); https://doi.org/10.1016/j.arabjc.2014.06.008
- T. Taniguchi, H. Sato, Y. Hagiwara, T. Asahi and H. Koshima, Commun. Chem., 2, 19 (2019); https://doi.org/10.1038/s42004-019-0121-8
- V.K. Gupta and R.A. Singh, RSC Adv., 5, 38591 (2015); https://doi.org/10.1039/C5RA04907E
- P. Karuppasamy, T. Kamalesh, V. Mohankumar, S.A. Kalam, M.S. Pandian, P. Ramasamy, S. Verma and S.V. Rao, J. Mol. Struct., 1176, 254 (2019); https://doi.org/10.1016/j.molstruc.2018.08.074
- M.V. Kök and E. Okandan, J. Therm. Anal., 46, 1657 (1996); https://doi.org/10.1007/BF01980771
- M. Magesh, G.A. Babu and P. Ramasamy, J. Cryst. Growth, 324, 201 (2011); https://doi.org/10.1016/j.jcrysgro.2011.03.057
- M.S. Kumar, K. Rajesh, G.V. Vijayaraghavan and S. Krishnan, Mater. Sci. Pol., 36, 733 (2018); https://doi.org/10.2478/msp-2018-0086
- H. Liu, H. Wu, H. Yu, Z. Hu and Y. Wu, Dalton Trans., 48, 16626 (2019); https://doi.org/10.1039/C9DT03451J
- S. Sudhahar, M.K. Kumar, A. Silambarasan, R. Muralidharan and R.M. Kumar, J. Mater., 7, 539312 (2013); https://doi.org/10.1155/2013/539312
- J.A. Malek, Thermochim. Acta, 138, 337 (1989); https://doi.org/10.1016/0040-6031(89)87270-3
- J. Malek, Thermochim. Acta, 200, 257 (1992); https://doi.org/10.1016/0040-6031(92)85118-F
- T. Kanagasekaran, P. Mythili, P. Srinivasan, A.Y. Nooraldeen, P.K. Palanisamy and R. Gopalakrishnan, Cryst. Growth Des., 8, 2335 (2008); https://doi.org/10.1021/cg701132f
- V. Fasano, J.E. Radcliffe and M.J. Ingleson, Organometallics, 36, 1623 (2017); https://doi.org/10.1021/acs.organomet.7b00174
- C. Sundararaja and S. Sagadevan, Mater. Res., 21, e20160595 (2018); https://doi.org/10.1590/1980-5373-MR-2016-0595
References
G. Tan, Q. Wang, H. Zheng, W. Zhao, S. Zhang and Z. Liu, J. Phys. Chem. A, 115, 5517 (2011); https://doi.org/10.1021/jp203580r
S. Vyazovkin and C.A. Wight, Chem. Mater., 11, 3386 (1999); https://doi.org/10.1021/cm9904382
A.K. Galwey, J. Therm. Anal. Calorim., (2020) (In press); https://doi.org/10.1007/s10973-020-09461-w
S.Vyazovkin, A.K. Burnham, L. Favergeon, N. Koga, E. Moukhina, L.A. Pérez-Maqueda and N. Sbirrazzuoli, Thermochim. Acta, 689, 178597 (2020); https://doi.org/10.1016/j.tca.2020.178597
G. Sanders and P.K. Gallagher, Thermochim. Acta, 388, 115 (2002); https://doi.org/10.1016/S0040-6031(02)00032-1
G. Garcia-Garrido, P.E. Sánchez-Jiménez, L.A. Pérez-Maqued, A. Perejón and J.M. Criado, Phys. Chem. Chem. Phys., 18, 29348 (2016); https://doi.org/10.1039/C6CP03677E
X.-X. Yan, L.-P. Lu and M.-L. Zhu, Acta Cryst., E70, o853 (2014); https://doi.org/10.1107/S1600536814015268
N.V. Muravyev, N. Koga, D.B. Meerov and A.N. Pivkina, Phys. Chem. Chem. Phys., 19, 3254 (2017); https://doi.org/10.1039/C6CP08218A
M. Nakano, T. Wada and N. Koga, J. Phys. Chem. A, 119, 9761 (2015); https://doi.org/10.1021/acs.jpca.5b07044
C.G. Hamaker, O.S. Maryashina, D.K. Daley and A.L.J. Wadler, Chem. Cryst., 40, 34 (2010); https://doi.org/10.1007/s10870-009-9601-5
N. Dege, M.S.H. Faizi, O.E. Dogan, E. Agar and I.A. Golenya, Cryst. Commun., 75, 770 (2019); https://doi.org/10.1107/S205698901900642X
S.-S. Qian, Y.-T. Ye, J.-Q. Ren, Z. You and H.-L. Zhu, Synth. React. Inorg. Met.-Org. Nano-Metal Chem., 46, 1220 (2016); https://doi.org/10.1080/15533174.2015.1004449
S. Leela, T.D. Rani, A. Subashini, S. Brindha, R.R. Babu and K. Ramamurthi, Arab. J. Chem., 10, S3974 (2017); https://doi.org/10.1016/j.arabjc.2014.06.008
T. Taniguchi, H. Sato, Y. Hagiwara, T. Asahi and H. Koshima, Commun. Chem., 2, 19 (2019); https://doi.org/10.1038/s42004-019-0121-8
V.K. Gupta and R.A. Singh, RSC Adv., 5, 38591 (2015); https://doi.org/10.1039/C5RA04907E
P. Karuppasamy, T. Kamalesh, V. Mohankumar, S.A. Kalam, M.S. Pandian, P. Ramasamy, S. Verma and S.V. Rao, J. Mol. Struct., 1176, 254 (2019); https://doi.org/10.1016/j.molstruc.2018.08.074
M.V. Kök and E. Okandan, J. Therm. Anal., 46, 1657 (1996); https://doi.org/10.1007/BF01980771
M. Magesh, G.A. Babu and P. Ramasamy, J. Cryst. Growth, 324, 201 (2011); https://doi.org/10.1016/j.jcrysgro.2011.03.057
M.S. Kumar, K. Rajesh, G.V. Vijayaraghavan and S. Krishnan, Mater. Sci. Pol., 36, 733 (2018); https://doi.org/10.2478/msp-2018-0086
H. Liu, H. Wu, H. Yu, Z. Hu and Y. Wu, Dalton Trans., 48, 16626 (2019); https://doi.org/10.1039/C9DT03451J
S. Sudhahar, M.K. Kumar, A. Silambarasan, R. Muralidharan and R.M. Kumar, J. Mater., 7, 539312 (2013); https://doi.org/10.1155/2013/539312
J.A. Malek, Thermochim. Acta, 138, 337 (1989); https://doi.org/10.1016/0040-6031(89)87270-3
J. Malek, Thermochim. Acta, 200, 257 (1992); https://doi.org/10.1016/0040-6031(92)85118-F
T. Kanagasekaran, P. Mythili, P. Srinivasan, A.Y. Nooraldeen, P.K. Palanisamy and R. Gopalakrishnan, Cryst. Growth Des., 8, 2335 (2008); https://doi.org/10.1021/cg701132f
V. Fasano, J.E. Radcliffe and M.J. Ingleson, Organometallics, 36, 1623 (2017); https://doi.org/10.1021/acs.organomet.7b00174
C. Sundararaja and S. Sagadevan, Mater. Res., 21, e20160595 (2018); https://doi.org/10.1590/1980-5373-MR-2016-0595