Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Study of Organization and Dynamics of Multi-Tryptophan Protein Molecules Utilizing Red Edge Excitation Shift Approach: A Review
Corresponding Author(s) : Anisur R. Molla
Asian Journal of Chemistry,
Vol. 32 No. 10 (2020): Vol 32 Issue 10
Abstract
A shift in the fluorescence emission maxima with gradual increase in excitation wavelength is termed as red edge excitation shift (REES). Tryptophan residues are widely utilized as intrinsic fluorescence probe to investigate the protein structures. Wavelength selective tryptophan fluorescence can explore the dynamics of surrounded water molecules, the ubiquitous biological solvent. Thus REES experiment of various protein conformational states can provide significant input to the study of protein folding pathway and it can also be useful to study interaction of proteins with others. In this review article, we shall focus on red edge effect of various multi-tryptophan proteins in their respective native, intermediate and denatured state.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Henzler-Wildman and D. Kern, Nature, 450, 964 (2007);https://doi.org/10.1038/nature06522
- M.S. Smyth and J.H. Martin, Mol. Pathol., 53, 8 (2000); https://doi.org/10.1136/mp.53.1.8
- A. Chattopadhyay and S. Haldar, Acc. Chem. Res., 47, 12 (2014); https://doi.org/10.1021/ar400006z
- L. Anson, Nature, 459, 343 (2009); https://doi.org/10.1038/459343a
- J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer-Plenum: New York (1999).
- A. Chattopadhyay and S. Mukherjee, J. Phys. Chem. B, 103, 8180 (1999); https://doi.org/10.1021/jp991303m
- A.P. Demchenko and A.S. Ladokhin, Eur. Biophys. J., 15, 369 (1988); https://doi.org/10.1007/BF00254724
- M. Taniguchi, H. Du and J.S. Lindsey, Photochem. Photobiol., 94,277 (2018); https://doi.org/10.1111/php.12862
- M. Taniguchi and J.S. Lindsey, Photochem. Photobiol., 94, 290 (2018); https://doi.org/10.1111/php.12860
- A.B.T. Ghisaidoobe and S.J. Chung, Int. J. Mol. Sci., 15, 22518 (2014); https://doi.org/10.3390/ijms151222518
- P.R. Callis, Methods Enzymol., 278, 113 (1997); https://doi.org/10.1016/S0076-6879(97)78009-1
- H. Raghuraman, D.A. Kelkar and A. Chattopadhyay, eds.: C.D. Geddes and J.R. Lakowicz, Novel Insights into Protein Structure and Dynamics Utilizing the Red Edge Excitation Shift, In: Reviews in Fluorescence, Springer: New York, pp 199-222 (2005).
- J.T. Vivian and P.R. Callis, Biophys. J., 80, 2093 (2001); https://doi.org/10.1016/S0006-3495(01)76183-8
- M.R. Eftink, ed.: C.H. Suelter, Fluorescence Techniques for Studying Protein Structure, In: Methods of Biochemical Analysis, John Wiley: New York, vol. 35, pp. 127-205 (1991).
- T. Nakano and A.L. Fink, J. Biol. Chem., 265, 12356 (1990).
- N. Tayeh, T. Rungassamy and J.R. Albani, J. Pharm. Biomed. Anal., 50, 107 (2009); https://doi.org/10.1016/j.jpba.2009.03.015
- P. Mandal, A.R. Molla and D.K. Mandal, J. Biochem., 154, 531 (2013); https://doi.org/10.1093/jb/mvt084
- A. Szabo, T. Stepanik, D. Wayner and N. Young, Biophys. J., 41, 233 (1983); https://doi.org/10.1016/S0006-3495(83)84433-6
- K.K. Rohatgi-Mukherjee, Fundamentals of Photochemistry, Wiley Eastern: New Delhi (1978).
- J.B. Birks, Photophysics of Aromatic Molecules, Wiley-Interscience: London (1970).
- K. Itoh and T. Azumi, J. Chem. Phys., 62, 3431 (1975); https://doi.org/10.1063/1.430977
- S.K. Cushing, M. Li, F. Huang and N. Wu, ACS Nano, 8, 1002 (2014); https://doi.org/10.1021/nn405843d
- J.R. Lakowicz and S. Keating-Nakamoto, Biochemistry, 23, 3013 (1984); https://doi.org/10.1021/bi00308a026
- S. Mukherjee and A. Chattopadhyay, Biochemistry, 33, 5089 (1994); https://doi.org/10.1021/bi00183a012
- A.P. Demchenko, Trends Biochem. Sci., 13, 374 (1988); https://doi.org/10.1016/0968-0004(88)90173-9
- A.P. Demchenko, Methods Enzymol., 450, 59 (2008); https://doi.org/10.1016/S0076-6879(08)03404-6
- S. Mukherjee and A. Chattopadhyay, J. Fluoresc., 5, 237 (1995); https://doi.org/10.1007/BF00723895
- A.P. Demchenko, Eur. Biophys. J., 16, 121 (1988); https://doi.org/10.1007/BF00255522
- D.W. Pierce and S.G. Boxer, Biophys. J., 68, 1583 (1995); https://doi.org/10.1016/S0006-3495(95)80331-0
- A.N. Rubinov and V.I. Tomin, Opt. Spectrosc. (USSR), 29, 1082 (1970).
- M.C. Galley and R.M. Purkey, Proc. Natl. Acad. Sci. USA, 67, 1116 (1970); https://doi.org/10.1073/pnas.67.3.1116
- A.P. Demchenko, Ukr. Biokhim. Zh., 53, 22 (1981).
- A.P. Demchenko, Luminescence and Dynamics of Protein Structure, Naukova Dumka: Kiev (1988).
- A.P. Demchenko, Luminescence, 17, 19 (2002); https://doi.org/10.1002/bio.671
- S. Guha, S.S. Rawat, A. Chattopadhyay and B. Bhattacharyya, Biochemistry, 35, 13426 (1996); https://doi.org/10.1021/bi961251g
- A.P. Demchenko, A.S. Ladokhin and E.G. Kostrzhevska, Mol. Biol. (Mosk.), 21, 663 (1987).
- Y.A.K. Reshetnyak and E.A. Burstein, Biofizika, 42, 293 (1997).
- J.M. Beechem and L. Brand, Annu. Rev. Biochem., 54, 43 (19 85);https://doi.org/10.1146/annurev.bi.54.070185.000355
- A.P. Demchenko, Ultraviolet Spectroscopy of Proteins, Springer-Verlag: Heidelberg, New York (1986).
- C. Slingsby and G.J. Wistow, Prog. Biophys. Mol. Biol., 115, 52 (2014); https://doi.org/10.1016/j.pbiomolbio.2014.02.006
- S.C. Rao and C.M. Rao, FEBS Lett., 337, 269 (1994); https://doi.org/10.1016/0014-5793(94)80206-8
- D.E. Fosket and L.C. Morejohn, Annu. Rev. Plant Physiol. Plant Mol. Biol., 43, 201 (1992); https://doi.org/10.1146/annurev.pp.43.060192.001221
- G.S. Gray and M. Kehoe, Infect. Immun., 46, 615 (1984); https://doi.org/10.1128/IAI.46.2.615-618.1984
- T.F. Spande and B. Witkop, Methods Enzymol., 11, 498 (1967); https://doi.org/10.1016/S0076-6879(67)11060-4
- S.M. Raja, S.S. Rawat, A. Chattopadhyay and A.K. Lala, Biophys. J.,76, 1469 (1999); https://doi.org/10.1016/S0006-3495(99)77307-8
- A. Chattopadhyay, S.S. Rawat, D.A. Kelkar, S. Ray and A. Chakrabarti, Protein Sci., 11, 2389 (2003); https://doi.org/10.1110/ps.03302003
- A. Chakrabarti, D.A. Kelkar and A. Chattopadhyay, Biosci. Rep., 26, 369 (2006); https://doi.org/10.1007/s10540-006-9024-x
- D.A. Kelkar, A. Chattopadhyay, A. Chakrabarti and M. Bhattacharyya, Biopolymers, 77, 325 (2005); https://doi.org/10.1002/bip.20233
- A.L. Fink, Annu. Rev. Biophys. Biomol. Struct., 24, 495 (1995); https://doi.org/10.1146/annurev.bb.24.060195.002431
- D.A. Kelkar, A. Chaudhuri, S. Haldar and A. Chattopadhyay, Eur. Biophys. J., 39, 1453 (2010); https://doi.org/10.1007/s00249-010-0603-1
- A. Chaudhuri, S. Haldar and A. Chattopadhyay, Biochem. Biophys. Res. Commun., 394, 1082 (2010); https://doi.org/10.1016/j.bbrc.2010.03.130
- H. Lis and N. Sharon, Chem. Rev., 98, 637 (1998); https://doi.org/10.1021/cr940413g
- F. Casset, T. Hamelryck, R. Loris, J.R. Brisson, C. Tellier, M.H. DaoThi, L. Wyns, F. Poortmans, S. Pérez and A. Imberty, J. Biol. Chem., 270, 25619 (1995); https://doi.org/10.1074/jbc.270.43.25619
- J.R. Albani, J. Fluoresc., 6, 199 (1996); https://doi.org/10.1007/BF00732823
- A.R. Molla, S.S. Maity, S. Ghosh and D.K. Mandal, Biochimie, 91,857 (2009); https://doi.org/10.1016/j.biochi.2009.04.006
- P. Mandal and D.K. Mandal, J. Fluoresc., 21, 2123 (2011); https://doi.org/10.1007/s10895-011-0913-4
- A. Chatterjee and D.K. Mandal, Biochim. Biophys. Acta, 1648, 174 (2003); https://doi.org/10.1016/S1570-9639(03)00120-1
- D. Sen and D.K. Mandal, Biochimie, 93, 409 (2011); https://doi.org/10.1016/j.biochi.2010.10.013
- A.R. Bizzarri and S. Cannistraro, J. Phys. Chem. B, 106, 6617 (2002); https://doi.org/10.1021/jp020100m
- C.Y. Wong and M.R. Eftink, Protein Sci., 6, 689 (1997); https://doi.org/10.1002/pro.5560060318
- M.K. Knight, R.E. Woolley, A. Kwok, S. Parsons, H.B.L. Jones, C.E. Gulácsy, P. Phaal, O. Kassaar, K. Dawkins, E. Rodriguez, A. Marques, L. Bowsher, S.A. Wells, A. Watts, J.M.H. van den Elsen, A. Turner, J. O’Hara and C.R. Pudney, bioRxiv 2020.03.23.003608; https://doi.org/10.1101/2020.03.23.003608
References
K. Henzler-Wildman and D. Kern, Nature, 450, 964 (2007);https://doi.org/10.1038/nature06522
M.S. Smyth and J.H. Martin, Mol. Pathol., 53, 8 (2000); https://doi.org/10.1136/mp.53.1.8
A. Chattopadhyay and S. Haldar, Acc. Chem. Res., 47, 12 (2014); https://doi.org/10.1021/ar400006z
L. Anson, Nature, 459, 343 (2009); https://doi.org/10.1038/459343a
J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer-Plenum: New York (1999).
A. Chattopadhyay and S. Mukherjee, J. Phys. Chem. B, 103, 8180 (1999); https://doi.org/10.1021/jp991303m
A.P. Demchenko and A.S. Ladokhin, Eur. Biophys. J., 15, 369 (1988); https://doi.org/10.1007/BF00254724
M. Taniguchi, H. Du and J.S. Lindsey, Photochem. Photobiol., 94,277 (2018); https://doi.org/10.1111/php.12862
M. Taniguchi and J.S. Lindsey, Photochem. Photobiol., 94, 290 (2018); https://doi.org/10.1111/php.12860
A.B.T. Ghisaidoobe and S.J. Chung, Int. J. Mol. Sci., 15, 22518 (2014); https://doi.org/10.3390/ijms151222518
P.R. Callis, Methods Enzymol., 278, 113 (1997); https://doi.org/10.1016/S0076-6879(97)78009-1
H. Raghuraman, D.A. Kelkar and A. Chattopadhyay, eds.: C.D. Geddes and J.R. Lakowicz, Novel Insights into Protein Structure and Dynamics Utilizing the Red Edge Excitation Shift, In: Reviews in Fluorescence, Springer: New York, pp 199-222 (2005).
J.T. Vivian and P.R. Callis, Biophys. J., 80, 2093 (2001); https://doi.org/10.1016/S0006-3495(01)76183-8
M.R. Eftink, ed.: C.H. Suelter, Fluorescence Techniques for Studying Protein Structure, In: Methods of Biochemical Analysis, John Wiley: New York, vol. 35, pp. 127-205 (1991).
T. Nakano and A.L. Fink, J. Biol. Chem., 265, 12356 (1990).
N. Tayeh, T. Rungassamy and J.R. Albani, J. Pharm. Biomed. Anal., 50, 107 (2009); https://doi.org/10.1016/j.jpba.2009.03.015
P. Mandal, A.R. Molla and D.K. Mandal, J. Biochem., 154, 531 (2013); https://doi.org/10.1093/jb/mvt084
A. Szabo, T. Stepanik, D. Wayner and N. Young, Biophys. J., 41, 233 (1983); https://doi.org/10.1016/S0006-3495(83)84433-6
K.K. Rohatgi-Mukherjee, Fundamentals of Photochemistry, Wiley Eastern: New Delhi (1978).
J.B. Birks, Photophysics of Aromatic Molecules, Wiley-Interscience: London (1970).
K. Itoh and T. Azumi, J. Chem. Phys., 62, 3431 (1975); https://doi.org/10.1063/1.430977
S.K. Cushing, M. Li, F. Huang and N. Wu, ACS Nano, 8, 1002 (2014); https://doi.org/10.1021/nn405843d
J.R. Lakowicz and S. Keating-Nakamoto, Biochemistry, 23, 3013 (1984); https://doi.org/10.1021/bi00308a026
S. Mukherjee and A. Chattopadhyay, Biochemistry, 33, 5089 (1994); https://doi.org/10.1021/bi00183a012
A.P. Demchenko, Trends Biochem. Sci., 13, 374 (1988); https://doi.org/10.1016/0968-0004(88)90173-9
A.P. Demchenko, Methods Enzymol., 450, 59 (2008); https://doi.org/10.1016/S0076-6879(08)03404-6
S. Mukherjee and A. Chattopadhyay, J. Fluoresc., 5, 237 (1995); https://doi.org/10.1007/BF00723895
A.P. Demchenko, Eur. Biophys. J., 16, 121 (1988); https://doi.org/10.1007/BF00255522
D.W. Pierce and S.G. Boxer, Biophys. J., 68, 1583 (1995); https://doi.org/10.1016/S0006-3495(95)80331-0
A.N. Rubinov and V.I. Tomin, Opt. Spectrosc. (USSR), 29, 1082 (1970).
M.C. Galley and R.M. Purkey, Proc. Natl. Acad. Sci. USA, 67, 1116 (1970); https://doi.org/10.1073/pnas.67.3.1116
A.P. Demchenko, Ukr. Biokhim. Zh., 53, 22 (1981).
A.P. Demchenko, Luminescence and Dynamics of Protein Structure, Naukova Dumka: Kiev (1988).
A.P. Demchenko, Luminescence, 17, 19 (2002); https://doi.org/10.1002/bio.671
S. Guha, S.S. Rawat, A. Chattopadhyay and B. Bhattacharyya, Biochemistry, 35, 13426 (1996); https://doi.org/10.1021/bi961251g
A.P. Demchenko, A.S. Ladokhin and E.G. Kostrzhevska, Mol. Biol. (Mosk.), 21, 663 (1987).
Y.A.K. Reshetnyak and E.A. Burstein, Biofizika, 42, 293 (1997).
J.M. Beechem and L. Brand, Annu. Rev. Biochem., 54, 43 (19 85);https://doi.org/10.1146/annurev.bi.54.070185.000355
A.P. Demchenko, Ultraviolet Spectroscopy of Proteins, Springer-Verlag: Heidelberg, New York (1986).
C. Slingsby and G.J. Wistow, Prog. Biophys. Mol. Biol., 115, 52 (2014); https://doi.org/10.1016/j.pbiomolbio.2014.02.006
S.C. Rao and C.M. Rao, FEBS Lett., 337, 269 (1994); https://doi.org/10.1016/0014-5793(94)80206-8
D.E. Fosket and L.C. Morejohn, Annu. Rev. Plant Physiol. Plant Mol. Biol., 43, 201 (1992); https://doi.org/10.1146/annurev.pp.43.060192.001221
G.S. Gray and M. Kehoe, Infect. Immun., 46, 615 (1984); https://doi.org/10.1128/IAI.46.2.615-618.1984
T.F. Spande and B. Witkop, Methods Enzymol., 11, 498 (1967); https://doi.org/10.1016/S0076-6879(67)11060-4
S.M. Raja, S.S. Rawat, A. Chattopadhyay and A.K. Lala, Biophys. J.,76, 1469 (1999); https://doi.org/10.1016/S0006-3495(99)77307-8
A. Chattopadhyay, S.S. Rawat, D.A. Kelkar, S. Ray and A. Chakrabarti, Protein Sci., 11, 2389 (2003); https://doi.org/10.1110/ps.03302003
A. Chakrabarti, D.A. Kelkar and A. Chattopadhyay, Biosci. Rep., 26, 369 (2006); https://doi.org/10.1007/s10540-006-9024-x
D.A. Kelkar, A. Chattopadhyay, A. Chakrabarti and M. Bhattacharyya, Biopolymers, 77, 325 (2005); https://doi.org/10.1002/bip.20233
A.L. Fink, Annu. Rev. Biophys. Biomol. Struct., 24, 495 (1995); https://doi.org/10.1146/annurev.bb.24.060195.002431
D.A. Kelkar, A. Chaudhuri, S. Haldar and A. Chattopadhyay, Eur. Biophys. J., 39, 1453 (2010); https://doi.org/10.1007/s00249-010-0603-1
A. Chaudhuri, S. Haldar and A. Chattopadhyay, Biochem. Biophys. Res. Commun., 394, 1082 (2010); https://doi.org/10.1016/j.bbrc.2010.03.130
H. Lis and N. Sharon, Chem. Rev., 98, 637 (1998); https://doi.org/10.1021/cr940413g
F. Casset, T. Hamelryck, R. Loris, J.R. Brisson, C. Tellier, M.H. DaoThi, L. Wyns, F. Poortmans, S. Pérez and A. Imberty, J. Biol. Chem., 270, 25619 (1995); https://doi.org/10.1074/jbc.270.43.25619
J.R. Albani, J. Fluoresc., 6, 199 (1996); https://doi.org/10.1007/BF00732823
A.R. Molla, S.S. Maity, S. Ghosh and D.K. Mandal, Biochimie, 91,857 (2009); https://doi.org/10.1016/j.biochi.2009.04.006
P. Mandal and D.K. Mandal, J. Fluoresc., 21, 2123 (2011); https://doi.org/10.1007/s10895-011-0913-4
A. Chatterjee and D.K. Mandal, Biochim. Biophys. Acta, 1648, 174 (2003); https://doi.org/10.1016/S1570-9639(03)00120-1
D. Sen and D.K. Mandal, Biochimie, 93, 409 (2011); https://doi.org/10.1016/j.biochi.2010.10.013
A.R. Bizzarri and S. Cannistraro, J. Phys. Chem. B, 106, 6617 (2002); https://doi.org/10.1021/jp020100m
C.Y. Wong and M.R. Eftink, Protein Sci., 6, 689 (1997); https://doi.org/10.1002/pro.5560060318
M.K. Knight, R.E. Woolley, A. Kwok, S. Parsons, H.B.L. Jones, C.E. Gulácsy, P. Phaal, O. Kassaar, K. Dawkins, E. Rodriguez, A. Marques, L. Bowsher, S.A. Wells, A. Watts, J.M.H. van den Elsen, A. Turner, J. O’Hara and C.R. Pudney, bioRxiv 2020.03.23.003608; https://doi.org/10.1101/2020.03.23.003608