Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of SrTiO3 Nanotubes from Green TiO2 Nanoparticles for Enhanced Photocatalytic Activity
Corresponding Author(s) : S.V. Lokesh
Asian Journal of Chemistry,
Vol. 32 No. 10 (2020): Vol 32 Issue 10
Abstract
The strontium titanate (SrTiO3) nanotubes with perovskite structure was incorporated utilizing hydrothermal synthesis approach were examined with their photo catalytic activity. The TiO2 nanoparticles employed in synthesis of SrTiO3 nanotubes were synthesized prior using Azadirachta indica leaf extract commonly termed as green synthesis. SrTiO3 nanotubes with bandgap of 3.25 eV (purest form of semiconductor) showed the much better photocurrent intensity was attributed to the more homogenous and nanotube formation with perovskite structure and greater surface area with maximum light retention property. The SrTiO3 nanotubes obtained at much lower temperature of 150 ºC were characterized by XRD, TEM, FESEM, EDAX and FTIR analysis. Herein, we report the strontium titanate (SrTiO3) nanotubes as active photocatalyst and their kinetics study were performed for first order rate constant which confirmed the photodegradation of methylene blue dye in 90 min under UV light and 150 min under natural sunlight (visible) irradiation at ambient temperature.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Ye, M. Wang, D. Zheng, N. Zhang, C. Lin and Z. Lin, Nanoscale, 6, 3576 (2014); https://doi.org/10.1039/C3NR05564G
- D. Wang, J. Ye, T. Kako and T. Kimura, J. Phys. Chem. B, 110, 15824 (2006); https://doi.org/10.1021/jp062487p
- G. Zhang, G. Liu, L. Wang and J.T.S. Irvine, Chem. Soc. Rev., 45, 5951 (2016); https://doi.org/10.1039/C5CS00769K
- Q. Chen, N. De Marco, Y.M. Yang, T.-B. Song, C.-C. Chen, H. Zhao, Z. Hong, H. Zhou and Y. Yang, Nano Today, 10, 355 (2015); https://doi.org/10.1016/j.nantod.2015.04.009
- M. Moniruddin, B. Ilyassov, X. Zhao, E. Smith, T. Serikov, N. Ibrayev, R. Asmatulu and N. Nuraje, Mater. Today Energy, 7, 246 (2018); https://doi.org/10.1016/j.mtener.2017.10.005
- M. Petrovic, V. Chellappan and S. Ramakrishna, Sol. Energy, 122, 678 (2015); https://doi.org/10.1016/j.solener.2015.09.041
- K. Mahmood, S. Sarwar and M.T. Mehran, RSC Adv., 7, 17044 (2017); https://doi.org/10.1039/C7RA00002B
- H. Shen, Y. Lu, Y. Wang, Z. Pan, G. Cao, X. Yan and G. Fang, J. Adv. Ceramics, 5, 298 (2016); https://doi.org/10.1007/s40145-016-0203-3
- W. Zhao, J. Zhang, J. Pan, J. Qiu, J. Niu and C. Li, Nanoscale Res. Lett., 12, 371 (2017); https://doi.org/10.1186/s11671-017-2130-9
- T. Klaytae, P. Panthong and S. Thountom, Ceram. Int., 39, S405 (2013); https://doi.org/10.1016/j.ceramint.2012.10.103
- W. Rheinheimer and M.J. Hoffmann, J. Mater. Sci., 51, 1756 (2016); https://doi.org/10.1007/s10853-015-9535-6
- D. Hou, X. Hu, W. Ho, P. Hu and Y. Huang, J. Mater. Chem. A Mater. Energy Sustain., 3, 3935 (2015); https://doi.org/10.1039/C4TA05485G
- A. Fujishima and K. Honda, Nature, 238, 37 (1972); https://doi.org/10.1038/238037a0
- M.S. Wrighton, A.B. Ellis, P.T. Wolczanski, D.L. Morse, H.B. Abrahamson and D.S. Ginley, J. Am. Chem. Soc., 98, 2774 (1976); https://doi.org/10.1021/ja00426a017
- G. Canu and V. Buscaglia, CrystEngComm, 19, 3867 (2017); https://doi.org/10.1039/C7CE00834A
- L. Chen, S. Zhang, L. Wang, D. Xue and S. Yin, J. Cryst. Growth, 311, 746 (2009); https://doi.org/10.1016/j.jcrysgro.2008.09.185
- S. Shoji, G. Yin, M. Nishikawa, D. Atarashi, E. Sakai and M. Miyauchi, Chem. Phys. Lett., 658, 309 (2016); https://doi.org/10.1016/j.cplett.2016.06.062
- K. Domen, A. Kudo, T. Onishi, N. Kosugi and H. Kuroda, J. Phys. Chem., 90, 292 (1986); https://doi.org/10.1021/j100274a018
- S. Burnside, J.E. Moser, K. Brooks, M. Gratzel and D. Cahen, J. Phys. Chem. B, 103, 9328 (1999); https://doi.org/10.1021/jp9913867
- J.H. Pan, C. Shen, I. Ivanova, N. Zhou, X. Wang, W.C. Tan, Q.-H. Xu, D.W. Bahnemann and Q. Wang, ACS Appl. Mater. Interfaces, 7, 14859 (2015); https://doi.org/10.1021/acsami.5b03396
- S.T. Huang, W.W. Lee, J.L. Chang, W.S. Huang, S.Y. Chou and C.C. Chen, J. Taiwan Inst. Chem. Eng., 45, 1927 (2014); https://doi.org/10.1016/j.jtice.2014.02.003
- D. Chen, X. Jiao and M. Zhang, J. Eur. Ceram. Soc., 20, 1261 (2000); https://doi.org/10.1016/S0955-2219(00)00003-0
- C.E. Ekuma, M. Jarrell, J. Moreno and D. Bagayoko, AIP Adv., 2, 012189 (2012); https://doi.org/10.1063/1.3700433
- E.C. Su, B.S. Huang and M.Y. Wey, Sol. Energy, 134, 52 (2016); https://doi.org/10.1016/j.solener.2016.04.007
- G. Soler-Illia, A. Louis and C. Sanchez, Chem. Mater., 14, 750 (2002); https://doi.org/10.1021/cm011217a
- J.C. Yu, L.Z. Zhang, Z. Zheng and J.C. Zhao, Chem. Mater., 15, 2280 (2003); https://doi.org/10.1021/cm0340781
- W.R. Kunusa, R. Abdullah, K. Bilondatu and W.Z. Tulie, J. Phys. Conf. Ser., 1422, 012040 (2020); https://doi.org/10.1088/1742-6596/1422/1/012040
- T. Sakthivel and K. Jagannathan, Mechan. Mater. Sci. Eng. J., 9(1) (2017); https://doi.org/10.2412/mmse.80.76.610
- H. Turasan and J.L. Kokini, Biomacromolecules, 18, 331 (2017); https://doi.org/10.1021/acs.biomac.6b01455
- Y. Du, M.S. Zhang, J. Wu, L. Kang, S. Yang, P. Wu and Z. Yin, Appl. Phys. Mater. Sci., 76, 1105 (2003); https://doi.org/10.1007/s00339-002-1998-z
- F. Urbach, Phys. Rev., 92, 1324 (1953); https://doi.org/10.1103/PhysRev.92.1324
- G. Liu, T. Wu, J. Zhao, H. Hidaka and N. Serpone, Environ. Sci. Technol., 33, 2081 (1999); https://doi.org/10.1021/es9807643
- C. Ramli, P. Ismail and A. Rahmat, Scient. World J., 2014, 964731 (2014); https://doi.org/10.1155/2014/964731
- A. Shi, H. Li, S. Yin, B. Liu, J. Zhang and Y. Wang, Appl. Catal. B, 218, 137 (2017); https://doi.org/10.1016/j.apcatb.2017.06.017
- T. Xian, H. Yang, L. Di, J. Ma, H. Zhang and J. Dai, Nanoscale Res. Lett., 9, 327 (2014); https://doi.org/10.1186/1556-276X-9-327
- B. Ganapuram, M. Alle, R. Dadigala, A. Dasari, V. Maragoni and V. Guttena, Int. Nano Lett., 5, 215 (2015); https://doi.org/10.1007/s40089-015-0158-3
- D. Ayodhya, M. Venkatesham, A. Santoshi kumari, G.B. Reddy, D. Ramakrishna and G. Veerabhadram, J. Exp. Nanosci., 11, 418 (2016); https://doi.org/10.1080/17458080.2015.1070312
- J. Fan, Z. Zhao, W. Liu, Y. Xue and S. Yin, J. Colloid Interface Sci., 470, 229 (2016); https://doi.org/10.1016/j.jcis.2016.02.045
- N.K. Veldurthi, S. Palla, R. Velchuri, P. Guduru and V. Muga, Mater. Express, 5, 445 (2015); https://doi.org/10.1166/mex.2015.1255
- P. Wongkalasin, S. Chavadej and T. Sreethawong, Colloids Surf. A Physicochem. Eng. Asp., 384, 519 (2011); https://doi.org/10.1016/j.colsurfa.2011.05.022
References
M. Ye, M. Wang, D. Zheng, N. Zhang, C. Lin and Z. Lin, Nanoscale, 6, 3576 (2014); https://doi.org/10.1039/C3NR05564G
D. Wang, J. Ye, T. Kako and T. Kimura, J. Phys. Chem. B, 110, 15824 (2006); https://doi.org/10.1021/jp062487p
G. Zhang, G. Liu, L. Wang and J.T.S. Irvine, Chem. Soc. Rev., 45, 5951 (2016); https://doi.org/10.1039/C5CS00769K
Q. Chen, N. De Marco, Y.M. Yang, T.-B. Song, C.-C. Chen, H. Zhao, Z. Hong, H. Zhou and Y. Yang, Nano Today, 10, 355 (2015); https://doi.org/10.1016/j.nantod.2015.04.009
M. Moniruddin, B. Ilyassov, X. Zhao, E. Smith, T. Serikov, N. Ibrayev, R. Asmatulu and N. Nuraje, Mater. Today Energy, 7, 246 (2018); https://doi.org/10.1016/j.mtener.2017.10.005
M. Petrovic, V. Chellappan and S. Ramakrishna, Sol. Energy, 122, 678 (2015); https://doi.org/10.1016/j.solener.2015.09.041
K. Mahmood, S. Sarwar and M.T. Mehran, RSC Adv., 7, 17044 (2017); https://doi.org/10.1039/C7RA00002B
H. Shen, Y. Lu, Y. Wang, Z. Pan, G. Cao, X. Yan and G. Fang, J. Adv. Ceramics, 5, 298 (2016); https://doi.org/10.1007/s40145-016-0203-3
W. Zhao, J. Zhang, J. Pan, J. Qiu, J. Niu and C. Li, Nanoscale Res. Lett., 12, 371 (2017); https://doi.org/10.1186/s11671-017-2130-9
T. Klaytae, P. Panthong and S. Thountom, Ceram. Int., 39, S405 (2013); https://doi.org/10.1016/j.ceramint.2012.10.103
W. Rheinheimer and M.J. Hoffmann, J. Mater. Sci., 51, 1756 (2016); https://doi.org/10.1007/s10853-015-9535-6
D. Hou, X. Hu, W. Ho, P. Hu and Y. Huang, J. Mater. Chem. A Mater. Energy Sustain., 3, 3935 (2015); https://doi.org/10.1039/C4TA05485G
A. Fujishima and K. Honda, Nature, 238, 37 (1972); https://doi.org/10.1038/238037a0
M.S. Wrighton, A.B. Ellis, P.T. Wolczanski, D.L. Morse, H.B. Abrahamson and D.S. Ginley, J. Am. Chem. Soc., 98, 2774 (1976); https://doi.org/10.1021/ja00426a017
G. Canu and V. Buscaglia, CrystEngComm, 19, 3867 (2017); https://doi.org/10.1039/C7CE00834A
L. Chen, S. Zhang, L. Wang, D. Xue and S. Yin, J. Cryst. Growth, 311, 746 (2009); https://doi.org/10.1016/j.jcrysgro.2008.09.185
S. Shoji, G. Yin, M. Nishikawa, D. Atarashi, E. Sakai and M. Miyauchi, Chem. Phys. Lett., 658, 309 (2016); https://doi.org/10.1016/j.cplett.2016.06.062
K. Domen, A. Kudo, T. Onishi, N. Kosugi and H. Kuroda, J. Phys. Chem., 90, 292 (1986); https://doi.org/10.1021/j100274a018
S. Burnside, J.E. Moser, K. Brooks, M. Gratzel and D. Cahen, J. Phys. Chem. B, 103, 9328 (1999); https://doi.org/10.1021/jp9913867
J.H. Pan, C. Shen, I. Ivanova, N. Zhou, X. Wang, W.C. Tan, Q.-H. Xu, D.W. Bahnemann and Q. Wang, ACS Appl. Mater. Interfaces, 7, 14859 (2015); https://doi.org/10.1021/acsami.5b03396
S.T. Huang, W.W. Lee, J.L. Chang, W.S. Huang, S.Y. Chou and C.C. Chen, J. Taiwan Inst. Chem. Eng., 45, 1927 (2014); https://doi.org/10.1016/j.jtice.2014.02.003
D. Chen, X. Jiao and M. Zhang, J. Eur. Ceram. Soc., 20, 1261 (2000); https://doi.org/10.1016/S0955-2219(00)00003-0
C.E. Ekuma, M. Jarrell, J. Moreno and D. Bagayoko, AIP Adv., 2, 012189 (2012); https://doi.org/10.1063/1.3700433
E.C. Su, B.S. Huang and M.Y. Wey, Sol. Energy, 134, 52 (2016); https://doi.org/10.1016/j.solener.2016.04.007
G. Soler-Illia, A. Louis and C. Sanchez, Chem. Mater., 14, 750 (2002); https://doi.org/10.1021/cm011217a
J.C. Yu, L.Z. Zhang, Z. Zheng and J.C. Zhao, Chem. Mater., 15, 2280 (2003); https://doi.org/10.1021/cm0340781
W.R. Kunusa, R. Abdullah, K. Bilondatu and W.Z. Tulie, J. Phys. Conf. Ser., 1422, 012040 (2020); https://doi.org/10.1088/1742-6596/1422/1/012040
T. Sakthivel and K. Jagannathan, Mechan. Mater. Sci. Eng. J., 9(1) (2017); https://doi.org/10.2412/mmse.80.76.610
H. Turasan and J.L. Kokini, Biomacromolecules, 18, 331 (2017); https://doi.org/10.1021/acs.biomac.6b01455
Y. Du, M.S. Zhang, J. Wu, L. Kang, S. Yang, P. Wu and Z. Yin, Appl. Phys. Mater. Sci., 76, 1105 (2003); https://doi.org/10.1007/s00339-002-1998-z
F. Urbach, Phys. Rev., 92, 1324 (1953); https://doi.org/10.1103/PhysRev.92.1324
G. Liu, T. Wu, J. Zhao, H. Hidaka and N. Serpone, Environ. Sci. Technol., 33, 2081 (1999); https://doi.org/10.1021/es9807643
C. Ramli, P. Ismail and A. Rahmat, Scient. World J., 2014, 964731 (2014); https://doi.org/10.1155/2014/964731
A. Shi, H. Li, S. Yin, B. Liu, J. Zhang and Y. Wang, Appl. Catal. B, 218, 137 (2017); https://doi.org/10.1016/j.apcatb.2017.06.017
T. Xian, H. Yang, L. Di, J. Ma, H. Zhang and J. Dai, Nanoscale Res. Lett., 9, 327 (2014); https://doi.org/10.1186/1556-276X-9-327
B. Ganapuram, M. Alle, R. Dadigala, A. Dasari, V. Maragoni and V. Guttena, Int. Nano Lett., 5, 215 (2015); https://doi.org/10.1007/s40089-015-0158-3
D. Ayodhya, M. Venkatesham, A. Santoshi kumari, G.B. Reddy, D. Ramakrishna and G. Veerabhadram, J. Exp. Nanosci., 11, 418 (2016); https://doi.org/10.1080/17458080.2015.1070312
J. Fan, Z. Zhao, W. Liu, Y. Xue and S. Yin, J. Colloid Interface Sci., 470, 229 (2016); https://doi.org/10.1016/j.jcis.2016.02.045
N.K. Veldurthi, S. Palla, R. Velchuri, P. Guduru and V. Muga, Mater. Express, 5, 445 (2015); https://doi.org/10.1166/mex.2015.1255
P. Wongkalasin, S. Chavadej and T. Sreethawong, Colloids Surf. A Physicochem. Eng. Asp., 384, 519 (2011); https://doi.org/10.1016/j.colsurfa.2011.05.022