Copyright (c) 2024 P. Shanmugasundaram, D. Easwaramoorthy, J. Herbert Mabel, Srikanth Jeyabalan, Chetan Ashok
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization, in Silico and in vitro Screening of Anticancer Activity of Novel Curcumin Analogues
Corresponding Author(s) : P. Shanmugasundaram
Asian Journal of Chemistry,
Vol. 36 No. 11 (2024): Vol 36 Issue 11, 2024
Abstract
Global problem of cancer associated side effects with current chemotherapeutics and promising anticancer activity of curcumins, intended present study to carry out the synthesis of some new curcumin analogues using chromone aldehydes and cyclic ketones. The study involved in silico screening and in vitro anticancer evaluation of new synthesized compounds against the breast cancer cell line MDA-MB-231 using the MTT assay. All synthesized compounds exhibited significant cytotoxicity, with IC50 values ranging from 34.04 ± 0.05 µg to 43.96 ± 0.05 µg, comparable to the standard drug cisplatin (IC50 = 29.25 ± 0.14 µg). Among all new synthesized curcumin analogues, compound 2 exhibited the highest anticancer activity. Molecular docking studies supported these findings, demonstrating strong binding affinities of the chromone compounds to key protein targets EGFR (PDB ID: 3UG2) and ERBB2 (PDB ID: 3H3B), critical in breast cancer pathogenesis. The strong cytotoxic effects and binding affinities suggest that curcumin analogues could serve as promising candidates for developing targeted anticancer therapies.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Middleton, C. Kandaswami and T.C. Theoharides, Pharmacol. Rev., 52, 673 (2000).
- M.-H. Pan and C.-T. Ho, Chem. Soc. Rev., 37, 2558 (2008); https://doi.org/10.1039/b801558a
- F. Bray, M. Laversanne, H. Sung, J. Ferlay, R.L. Siegel, I. Soerjomataram and A. Jemal, CA Cancer J. Clin., 74, 229 (2024); https://doi.org/10.3322/caac.21834
- M.M. Gottesman, O. Lavi, M.D. Hall and J.-P. Gillet, Annu. Rev. Pharmacol. Toxicol., 56, 85 (2016); https://doi.org/10.1146/annurev-pharmtox-010715-103111
- D. Hanahan and R.A. Weinberg, Cell, 144, 646 (2011); https://doi.org/10.1016/j.cell.2011.02.013
- D.J. Newman and G.M. Cragg, J. Nat. Prod., 79, 629 (2016); https://doi.org/10.1021/acs.jnatprod.5b01055
- D.K. Agrawal and P.K. Mishra, Med. Res. Rev., 30, 818 (2010); https://doi.org/10.1002/med.20188
- M.-J.R. Howes, N.S.L. Perry and P.J. Houghton, Phytother. Res., 17, 1 (2003); https://doi.org/10.1002/ptr.1280
- A. Goel, A.B. Kunnumakkara and B.B. Aggarwal, Biochem. Pharmacol., 75, 787 (2008); https://doi.org/10.1016/j.bcp.2007.08.016
- P. Shanmugasundaram, S.S. Kumar, R. Ubaid, D. Easwaramoorthy, S.M. Gowri and S. Hemalatha, Biocatal. Agric. Biotechnol., 20, 101238 (2019); https://doi.org/10.1016/j.bcab.2019.101238
- P. Shanmugasundaram, D. Easwaramoorthy, A.R. Mhashal and A. Khan, Rasayan J. Chem., 16, 1599 (2023); https://doi.org/10.31788/RJC.2023.1638506
- S.H. Abdullahi, A. Uzairu, G.A. Shallangwa, S. Uba and A.B. Umar, J. Egypt. Natl. Canc. Inst., 35, 24 (2023); https://doi.org/10.1186/s43046-023-00182-3
- G. Bitencourt-Ferreira and W.F. de Azevedo, in eds.: W.F. de Azevedo Jr., Molegro Virtual Docker for Docking. In: Docking Screens for Drug Discovery, New York, NY: Springer; pp. 149–167 (2019).
- C. Demetgül and N. Beyazit, Carbohydr. Polym., 181, 812 (2018); https://doi.org/10.1016/j.carbpol.2017.11.074
- C.M.M. Santos, V.L.M. Silva and A.M.S. Silva, Molecules, 22, 1665 (2017); https://doi.org/10.3390/molecules22101665
- S. Monika and R. Ramesh, New J. Chem., 47, 15622 (2023); https://doi.org/10.1039/D3NJ02869K
- M. Ghasemi, T. Turnbull, S. Sebastian and I. Kempson, Int. J. Mol. Sci., 22, 12827 (2021); https://doi.org/10.3390/ijms222312827
- T. Ibrahim, L. Mercatali, E. Sacanna, A. Tesei, S. Carloni, P. Ulivi, C. Liverani, F. Fabbri, M. Zanoni, W. Zoli and D. Amadori, Cancer Cell Int., 12, 48 (2012); https://doi.org/10.1186/1475-2867-12-48
- M. Marinovic, H. Rimac, L.P. de Carvalho, C. Rôla, S. Santana, K. Pavic, J. Held, M. Prudêncio and Z. Rajic, Bioorg. Med. Chem., 94, 117468 (2023); https://doi.org/10.1016/j.bmc.2023.117468
- A. Daina, O. Michielin and V. Zoete, J. Chem. Inf. Model., 54, 3284 (2014); https://doi.org/10.1021/ci500467k
- F. Lin, G. Zhang, X. Yang, M. Wang, R. Wang, M. Wan, J. Wang, B. Wu, T. Yan and Y. Jia, J. Ethnopharmacol., 303, 115933 (2023); https://doi.org/10.1016/j.jep.2022.115933
- L. Lv, J. Du, D. Wang and Z. Yan, Drug Des. Devel. Ther., 18, 375 (2024); https://doi.org/10.2147/DDDT.S441126
- P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin, B. Schwikowski and T. Ideker, Genome Res., 13, 2498 (2003); https://doi.org/10.1101/gr.1239303
- S. Sabarathinam, Sci. Rep., 14, 14852 (2024); https://doi.org/10.1038/s41598-024-61779-9
- M.B. Smith, March’s Advanced Organic Chemistry: Reactions, Mechanisms and Structure, John Wiley & Sons (2020).
- M. Kanehisa, M. Furumichi, M. Tanabe, Y. Sato and K. Morishima, Nucleic Acids Res., 45(D1), D353 (2017); https://doi.org/10.1093/nar/gkw1092
- M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P. Davis, K. Dolinski, S.S. Dwight, J.T. Eppig, M.A. Harris, D.P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J.C. Matese, J.E. Richardson, M. Ringwald, G.M. Rubin and G. Sherlock, Nat. Genet., 25, 25 (2000); https://doi.org/10.1038/75556
- N.K. Fuloria and S. Fuloria, J. Anal. Bioanal. Technol., s11, 1 (2013); https://doi.org/10.4172/2155-9872.S11-001
- S. Fuloria, Spectroscopy: Fundamental and Data Interpretation, Studium Press (2013).
- A.-L. Barabási, N. Gulbahce and J. Loscalzo, Nat. Rev. Genet., 12, 56 (2011); https://doi.org/10.1038/nrg2918
- J. Barretina, G. Caponigro, N. Stransky, K. Venkatesan, A.A. Margolin, S. Kim, C.J. Wilson, J. Lehár, G.V. Kryukov, D. Sonkin, A. Reddy, M. Liu, L. Murray, M.F. Berger, J.E. Monahan, P. Morais, J. Meltzer, A. Korejwa, J. Jané-Valbuena, F.A. Mapa, J. Thibault, E. Bric-Furlong, P. Raman, A. Shipway, I.H. Engels, J. Cheng, G.K. Yu, J. Yu, P. Aspesi, M. de Silva, K. Jagtap, M.D. Jones, L. Wang, E. Palescandolo, S. Gupta, M. Reich, C. Hatton, S. Mahan, C. Sougnez, R.C. Onofrio, T. Liefeld, L. MacConaill, W. Winckler, N. Li, J.P. Mesirov, S.B. Gabriel, G. Getz, K. Ardlie, V. Chan, V.E. Myer, B.L. Weber, J. Porter, M. Warmuth, P. Finan, J.L. Harris, M. Meyerson, T.R. Golub, M.P. Morrissey, W.R. Sellers, R. Schlegel and L.A. Garraway, Nature, 483, 603 (2012); https://doi.org/10.1038/nature11003
- S.M. Swain, M. Shastry and E. Hamilton, Nat. Rev. Drug Discov., 22, 101 (2023); https://doi.org/10.1038/s41573-022-00579-0
- N. O’Donovan and J. Crown, Anticancer Res., 27, 1285 (2007).
References
E. Middleton, C. Kandaswami and T.C. Theoharides, Pharmacol. Rev., 52, 673 (2000).
M.-H. Pan and C.-T. Ho, Chem. Soc. Rev., 37, 2558 (2008); https://doi.org/10.1039/b801558a
F. Bray, M. Laversanne, H. Sung, J. Ferlay, R.L. Siegel, I. Soerjomataram and A. Jemal, CA Cancer J. Clin., 74, 229 (2024); https://doi.org/10.3322/caac.21834
M.M. Gottesman, O. Lavi, M.D. Hall and J.-P. Gillet, Annu. Rev. Pharmacol. Toxicol., 56, 85 (2016); https://doi.org/10.1146/annurev-pharmtox-010715-103111
D. Hanahan and R.A. Weinberg, Cell, 144, 646 (2011); https://doi.org/10.1016/j.cell.2011.02.013
D.J. Newman and G.M. Cragg, J. Nat. Prod., 79, 629 (2016); https://doi.org/10.1021/acs.jnatprod.5b01055
D.K. Agrawal and P.K. Mishra, Med. Res. Rev., 30, 818 (2010); https://doi.org/10.1002/med.20188
M.-J.R. Howes, N.S.L. Perry and P.J. Houghton, Phytother. Res., 17, 1 (2003); https://doi.org/10.1002/ptr.1280
A. Goel, A.B. Kunnumakkara and B.B. Aggarwal, Biochem. Pharmacol., 75, 787 (2008); https://doi.org/10.1016/j.bcp.2007.08.016
P. Shanmugasundaram, S.S. Kumar, R. Ubaid, D. Easwaramoorthy, S.M. Gowri and S. Hemalatha, Biocatal. Agric. Biotechnol., 20, 101238 (2019); https://doi.org/10.1016/j.bcab.2019.101238
P. Shanmugasundaram, D. Easwaramoorthy, A.R. Mhashal and A. Khan, Rasayan J. Chem., 16, 1599 (2023); https://doi.org/10.31788/RJC.2023.1638506
S.H. Abdullahi, A. Uzairu, G.A. Shallangwa, S. Uba and A.B. Umar, J. Egypt. Natl. Canc. Inst., 35, 24 (2023); https://doi.org/10.1186/s43046-023-00182-3
G. Bitencourt-Ferreira and W.F. de Azevedo, in eds.: W.F. de Azevedo Jr., Molegro Virtual Docker for Docking. In: Docking Screens for Drug Discovery, New York, NY: Springer; pp. 149–167 (2019).
C. Demetgül and N. Beyazit, Carbohydr. Polym., 181, 812 (2018); https://doi.org/10.1016/j.carbpol.2017.11.074
C.M.M. Santos, V.L.M. Silva and A.M.S. Silva, Molecules, 22, 1665 (2017); https://doi.org/10.3390/molecules22101665
S. Monika and R. Ramesh, New J. Chem., 47, 15622 (2023); https://doi.org/10.1039/D3NJ02869K
M. Ghasemi, T. Turnbull, S. Sebastian and I. Kempson, Int. J. Mol. Sci., 22, 12827 (2021); https://doi.org/10.3390/ijms222312827
T. Ibrahim, L. Mercatali, E. Sacanna, A. Tesei, S. Carloni, P. Ulivi, C. Liverani, F. Fabbri, M. Zanoni, W. Zoli and D. Amadori, Cancer Cell Int., 12, 48 (2012); https://doi.org/10.1186/1475-2867-12-48
M. Marinovic, H. Rimac, L.P. de Carvalho, C. Rôla, S. Santana, K. Pavic, J. Held, M. Prudêncio and Z. Rajic, Bioorg. Med. Chem., 94, 117468 (2023); https://doi.org/10.1016/j.bmc.2023.117468
A. Daina, O. Michielin and V. Zoete, J. Chem. Inf. Model., 54, 3284 (2014); https://doi.org/10.1021/ci500467k
F. Lin, G. Zhang, X. Yang, M. Wang, R. Wang, M. Wan, J. Wang, B. Wu, T. Yan and Y. Jia, J. Ethnopharmacol., 303, 115933 (2023); https://doi.org/10.1016/j.jep.2022.115933
L. Lv, J. Du, D. Wang and Z. Yan, Drug Des. Devel. Ther., 18, 375 (2024); https://doi.org/10.2147/DDDT.S441126
P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin, B. Schwikowski and T. Ideker, Genome Res., 13, 2498 (2003); https://doi.org/10.1101/gr.1239303
S. Sabarathinam, Sci. Rep., 14, 14852 (2024); https://doi.org/10.1038/s41598-024-61779-9
M.B. Smith, March’s Advanced Organic Chemistry: Reactions, Mechanisms and Structure, John Wiley & Sons (2020).
M. Kanehisa, M. Furumichi, M. Tanabe, Y. Sato and K. Morishima, Nucleic Acids Res., 45(D1), D353 (2017); https://doi.org/10.1093/nar/gkw1092
M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P. Davis, K. Dolinski, S.S. Dwight, J.T. Eppig, M.A. Harris, D.P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J.C. Matese, J.E. Richardson, M. Ringwald, G.M. Rubin and G. Sherlock, Nat. Genet., 25, 25 (2000); https://doi.org/10.1038/75556
N.K. Fuloria and S. Fuloria, J. Anal. Bioanal. Technol., s11, 1 (2013); https://doi.org/10.4172/2155-9872.S11-001
S. Fuloria, Spectroscopy: Fundamental and Data Interpretation, Studium Press (2013).
A.-L. Barabási, N. Gulbahce and J. Loscalzo, Nat. Rev. Genet., 12, 56 (2011); https://doi.org/10.1038/nrg2918
J. Barretina, G. Caponigro, N. Stransky, K. Venkatesan, A.A. Margolin, S. Kim, C.J. Wilson, J. Lehár, G.V. Kryukov, D. Sonkin, A. Reddy, M. Liu, L. Murray, M.F. Berger, J.E. Monahan, P. Morais, J. Meltzer, A. Korejwa, J. Jané-Valbuena, F.A. Mapa, J. Thibault, E. Bric-Furlong, P. Raman, A. Shipway, I.H. Engels, J. Cheng, G.K. Yu, J. Yu, P. Aspesi, M. de Silva, K. Jagtap, M.D. Jones, L. Wang, E. Palescandolo, S. Gupta, M. Reich, C. Hatton, S. Mahan, C. Sougnez, R.C. Onofrio, T. Liefeld, L. MacConaill, W. Winckler, N. Li, J.P. Mesirov, S.B. Gabriel, G. Getz, K. Ardlie, V. Chan, V.E. Myer, B.L. Weber, J. Porter, M. Warmuth, P. Finan, J.L. Harris, M. Meyerson, T.R. Golub, M.P. Morrissey, W.R. Sellers, R. Schlegel and L.A. Garraway, Nature, 483, 603 (2012); https://doi.org/10.1038/nature11003
S.M. Swain, M. Shastry and E. Hamilton, Nat. Rev. Drug Discov., 22, 101 (2023); https://doi.org/10.1038/s41573-022-00579-0
N. O’Donovan and J. Crown, Anticancer Res., 27, 1285 (2007).