Copyright (c) 2025 Baliram Vibhute
This work is licensed under a Creative Commons Attribution 4.0 International License.
In vitro Antibacterial, Antifungal, Cytotoxicity and Molecular Docking Studies of Transition Metal(II) Complexes Derived from New Quinoline Schiff Base
Corresponding Author(s) : Baliram Tukaram Vibhute
Asian Journal of Chemistry,
Vol. 37 No. 2 (2025): Vol 37 Issue 2, 2025
Abstract
The synthesis of new quinoline based Schiff base and its metal complexes viz. Co2+, Cu2+, Ni2+ & Cd2+, were synthesized and characterized. The Schiff base was prepared by condensation of 2-hydroxy-7-methoxyquinoline-3-carbaldehyde and p-methylbenzene sulfonohydrazide. The structure of Schiff base and its metal(II) complexes were characterized through different physical and analytical techniques i.e., FTIR, 1H NMR, 13C NMR, ESR, ESI-MS, electronic spectra, elemental analysis and TGA. Magnetic susceptibility values indicate that Cu(II), Co(II) and Ni(II) complexes were paramagnetic in nature. Low molar conductivity values reveal that all the metal complexes are non-electrolytic in nature. Furthermore, all the compounds were subjected to in vitro biological activity and computational docking studies. The results showed that the Schiff based ligand and its metal(II) complexes exhibited higher activity against the A-549 cancer cell line and lower in case of the MCF-7 cancer cell lines compared to standard drug paclitaxel. Furthermore, the molecular docking study shows the significant binding affinity of metal complexes with tubulin protein. Hence, all the synthesized Schiff base metal complexes have excellent biological activity and could be act as potential anticancer agents.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Raczuk, B. Dmochowska, J. Samaszko-Fiertek and J. Madaj, Molecules, 27, 787 (2022); https://doi.org/10.3390/molecules27030787
- K.T. Tadele and T.W. Tsega, Anticancer Agents Med Chem., 19, 1786 (2019); https://doi.org/10.2174/1871520619666190227171716
- A.M.S. Hossain, J.M. Méndez-Arriaga, C. Xia, J. Xie and S. Gómez-Ruiz, Polyhedron, 217, 115692 (2022); https://doi.org/10.1016/j.poly.2022.115692
- K. Jagadesh Babu, D. Ayodhya and Shivaraj, Results Chem., 6, 10110 (2023); https://doi.org/10.1016/j.rechem.2023.101110
- V.E. Kuz’min, A.G. Artemenko, R.N. Lozytska, A.S. Fedtchouk, V.P. Lozitsky, E.N. Muratov and A.K. Mescheriakov, SAR QSAR Environ. Res., 16, 219 (2005); https://doi.org/10.1080/10659360500037206
- M.E. Hossain, M.N. Alam, J. Begum, M. Akbar Ali, M. Nazimuddin, F.E. Smith and R.C. Hynes, Inorg. Chim. Acta, 249, 207 (1996); https://doi.org/10.1016/0020-1693(96)05098-0
- Y. Vaghasiya, R. Nair, M. Soni, S. Baluja and S. Shanda, J. Serb. Chem. Soc., 69, 991 (2004); https://doi.org/10.2298/JSC0412991V
- C.T. Supuran, M. Barboiu, C. Luca, E. Pop, M.E. Brewster and A. Dinculescu, Eur. J. Med. Chem., 31, 597 (1996); https://doi.org/10.1016/0223-5234(96)89555-9
- B.K. Mallandur, G. Rangaiah and N.V. Harohally, Synth. Commun., 47, 1065 (2017); https://doi.org/10.1080/00397911.2017.1309668
- N.G. Yernale and M.B.H. Mathada, Bioinorg. Chem. Appl., 2014, 3149 (2014); https://doi.org/10.1155/2014/314963
- H.A. Althobiti and S.A. Zabin, Open Chem., 18, 591 (2020); https://doi.org/10.1515/chem-2020-0085
- P.S. Salve, S.G. Alegaon and D. Sriram, Bioorg. Med. Chem. Lett., 27, 1859 (2017); https://doi.org/10.1016/j.bmcl.2017.02.031
- A.A. Adeleke, S.J. Zamisa, M. Islam, K. Olofinsan, V.F. Salau, C. Mocktar and B. Omondi, Molecules, 26, 1205 (2021); https://doi.org/10.3390/molecules26051205
- G.T. Vidyavathi, B. Vinay Kumar, T. Aravinda and U. Hani, Nucleosides Nucleotides Nucleic Acids, 40, 264 (2021); https://doi.org/10.1080/15257770.2020.1868502
- H.R. Sonawane, B.T. Vibhute, B.D. Aghav, J.V. Deore and S.K. Patil, Eur. J. Med. Chem., 258, 115549 (2023); https://doi.org/10.1016/j.ejmech.2023.115549
- R.M. Singh and A. Srivastava, Indian J. Chem., 44, 1868 (2005).
- A. Rattan, Antimicrobials in Laboratory Medicine, B.I. Churchill Livingstone: New Delhi, pp. 85-108 (2000).
- I. Wiegand, K. Hilpert and R.E.W. Hancock, Nat. Protoc., 3, 163 (2008); https://doi.org/10.1038/nprot.2007.521
- Z. Moradi Alvand, H.R. Rajabi, A. Mirzaei and A. Masoumiasl, New J. Chem., 43, 15126 (2019); https://doi.org/10.1039/C9NJ03144H
- P. Sharma, S. Pant, V. Dave, K. Tak, V. Sadhu and K.R. Reddy, J. Microbiol. Methods, 160, 107 (2019); https://doi.org/10.1016/j.mimet.2019.03.007
- A. Misra, S. Jain, D. Kishore, V. Dave, K.R. Reddy, V. Sadhu, J. Dwivedi and S. Sharma, J. Microbiol. Methods, 163, 105648 (2019); https://doi.org/10.1016/j.mimet.2019.105648
- A. Nagaraja, M.D. Jalageri, Y.M. Puttaiahgowda, K. Raghava Reddy and A.V. Raghu, J. Microbiol. Methods, 163, 105650 (2019); https://doi.org/10.1016/j.mimet.2019.105650
- H.R. Rajabi, R. Naghiha, M. Kheirizadeh, H. Sadatfaraji, A. Mirzaei and Z.M. Alvand, Mater. Sci. Eng. C, 78, 1109 (2017); https://doi.org/10.1016/j.msec.2017.03.090
- G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell and A.J. Olson, J. Comput. Chem., 30, 2785 (2009); https://doi.org/10.1002/jcc.21256
- R.H. Wade and A.A. Hyman, Curr. Opin. Cell Biol., 9, 12 (1997); https://doi.org/10.1016/S0955-0674(97)80146-9
- E. Nogales, Cell. Mol. Life Sci., 56, 133 (1999); https://doi.org/10.1007/s000180050012
- R.A. Stanton, K.M. Gernert, J.H. Nettles and R. Aneja, Med. Res. Rev., 31, 443 (2011); https://doi.org/10.1002/med.20242
- S. Gupta and B. Bhattacharyya, Mol. Cell. Biochem., 253, 41 (2003); https://doi.org/10.1023/A:1026045100219
- B.V. Kumbhar and V.V. Bhandare, J. Biomol. Struct. Dyn., (2020); https://doi.org/10.1080/07391102.2020.1745689
- J.P. Snyder, J.H. Nettles, B. Cornett, K.H. Downing and E. Nogales, Proc. Natl. Acad. Sci. USA, 98, 5312 (2001); https://doi.org/10.1073/pnas.051309398
- J. Löwe, H. Li, K.H. Downing and E. Nogales, J. Mol. Biol., 313, 1045 (2001); https://doi.org/10.1006/jmbi.2001.5077
- M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek and G.R. Hutchison, J. Cheminform., 4, 17 (2012); https://doi.org/10.1186/1758-2946-4-17
- B.V. Kumbhar, V.V. Bhandare, D. Panda and A. Kunwar, J. Biomol. Struct. Dyn., 38, 426 (2020); https://doi.org/10.1080/07391102.2019.1577174
- W.L. DeLano, The PyMOL Molecular Graphics System, Version 1.1. Schrödinger LLC (2014); http://www.pymol.org https://doi.org/10.1038/hr.2014.17
- W.J. Geary, Coord. Chem. Rev., 7, 81 (1971); https://doi.org/10.1016/S0010-8545(00)80009-0
- V.V. Savant and C.C. Patel, J. Inorg. Nucl. Chem., 31, 2319 (1969); https://doi.org/10.1016/0022-1902(69)80561-0
- M. Pervaiz, I. Ahmad, M. Yousaf, S. Kirn, A. Munawar, Z. Saeed, A. Adnan, T. Gulzar, T. Kamal, A. Ahmad and A. Rashid, Spectrochim. Acta A Mol. Biomol. Spectrosc., 206, 642 (2019); https://doi.org/10.1016/j.saa.2018.05.057
- 36 N. Raman, A. Kulandaisamy and K. Jeyasubramanian, Synth. React. Inorg. Met.-Org. Chem., 31, 1249 (2001); https://doi.org/10.1081/SIM-100106862
- N. Sari, S. Arslan, E. Logoglu and I. Sakiyan, Gazi Univ. J. Sci., 16, 283 (2003).
- G. Mohamed and Z. Abd El-Wahab, J. Therm. Anal. Calorim., 73, 347 (2003); https://doi.org/10.1023/A:1025126801265
- A.S. Salameh and H.A. Tayim, Polyhedron, 2, 829 (1983); https://doi.org/10.1016/S0277-5387(00)87213-7
- H.S. Seleem, B.A. El-Shetary and M. Shebl, Heteroatom Chem., 18, 100 (2007); https://doi.org/10.1002/hc.20239
- M. Shebl and S.M.E. Khalil, Monatsh. Chem., 145, 146 (2015); https://doi.org/10.1007/s00706-014-1302-x
- M. Shebl, J. Coord. Chem., 62, 3217 (2009); https://doi.org/10.1080/00958970903012785
- M. Shebl, J. Mol. Struct., 1128, 79 (2017); https://doi.org/10.1016/j.molstruc.2016.08.056
- P. Tyagi, S. Chandra and B.S. Saraswat, Spectrochim. Acta A Mol. Biomol. Spectrosc., 134, 200 (2015); https://doi.org/10.1016/j.saa.2014.06.112
- D.P. Singh, R. Kumar, V. Malik and P. Tyagi, Transition Met. Chem., 32, 1051 (2007); https://doi.org/10.1007/s11243-007-0279-2
- T.R. Rao and A. Prasad, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 35, 299 (2005); https://doi.org/10.1081/SIM-200055245
- N.N. Greenwood and A. Earnshaw, Chemistry of the Elements. Heimemann, Oxford: UK, edn. 2 (1997).
- T.R. Reddy and R. Srinivasan, J. Chem. Phys., 43, 1404 (1965); https://doi.org/10.1063/1.1696933
- B.T. Thaker, P.K. Tandel, A.S. Patel, C.J. Vyas, M.S. Jesani and D.M. Patel, Indian J. Chem., 44A, 265 (2005).
- H.F. El-Shafiy and M. Shebl, J. Mol. Struct., 1156, 403 (2018); https://doi.org/10.1016/j.molstruc.2017.11.081
- M. Shebl, Spectrochim. Acta A Mol. Biomol. Spectrosc., 73, 313 (2009); https://doi.org/10.1016/j.saa.2009.02.030
- H.F. El-Shafiy and M. Shebl, J. Mol. Struct., 1194, 187 (2019); https://doi.org/10.1016/j.molstruc.2019.05.063
References
E. Raczuk, B. Dmochowska, J. Samaszko-Fiertek and J. Madaj, Molecules, 27, 787 (2022); https://doi.org/10.3390/molecules27030787
K.T. Tadele and T.W. Tsega, Anticancer Agents Med Chem., 19, 1786 (2019); https://doi.org/10.2174/1871520619666190227171716
A.M.S. Hossain, J.M. Méndez-Arriaga, C. Xia, J. Xie and S. Gómez-Ruiz, Polyhedron, 217, 115692 (2022); https://doi.org/10.1016/j.poly.2022.115692
K. Jagadesh Babu, D. Ayodhya and Shivaraj, Results Chem., 6, 10110 (2023); https://doi.org/10.1016/j.rechem.2023.101110
V.E. Kuz’min, A.G. Artemenko, R.N. Lozytska, A.S. Fedtchouk, V.P. Lozitsky, E.N. Muratov and A.K. Mescheriakov, SAR QSAR Environ. Res., 16, 219 (2005); https://doi.org/10.1080/10659360500037206
M.E. Hossain, M.N. Alam, J. Begum, M. Akbar Ali, M. Nazimuddin, F.E. Smith and R.C. Hynes, Inorg. Chim. Acta, 249, 207 (1996); https://doi.org/10.1016/0020-1693(96)05098-0
Y. Vaghasiya, R. Nair, M. Soni, S. Baluja and S. Shanda, J. Serb. Chem. Soc., 69, 991 (2004); https://doi.org/10.2298/JSC0412991V
C.T. Supuran, M. Barboiu, C. Luca, E. Pop, M.E. Brewster and A. Dinculescu, Eur. J. Med. Chem., 31, 597 (1996); https://doi.org/10.1016/0223-5234(96)89555-9
B.K. Mallandur, G. Rangaiah and N.V. Harohally, Synth. Commun., 47, 1065 (2017); https://doi.org/10.1080/00397911.2017.1309668
N.G. Yernale and M.B.H. Mathada, Bioinorg. Chem. Appl., 2014, 3149 (2014); https://doi.org/10.1155/2014/314963
H.A. Althobiti and S.A. Zabin, Open Chem., 18, 591 (2020); https://doi.org/10.1515/chem-2020-0085
P.S. Salve, S.G. Alegaon and D. Sriram, Bioorg. Med. Chem. Lett., 27, 1859 (2017); https://doi.org/10.1016/j.bmcl.2017.02.031
A.A. Adeleke, S.J. Zamisa, M. Islam, K. Olofinsan, V.F. Salau, C. Mocktar and B. Omondi, Molecules, 26, 1205 (2021); https://doi.org/10.3390/molecules26051205
G.T. Vidyavathi, B. Vinay Kumar, T. Aravinda and U. Hani, Nucleosides Nucleotides Nucleic Acids, 40, 264 (2021); https://doi.org/10.1080/15257770.2020.1868502
H.R. Sonawane, B.T. Vibhute, B.D. Aghav, J.V. Deore and S.K. Patil, Eur. J. Med. Chem., 258, 115549 (2023); https://doi.org/10.1016/j.ejmech.2023.115549
R.M. Singh and A. Srivastava, Indian J. Chem., 44, 1868 (2005).
A. Rattan, Antimicrobials in Laboratory Medicine, B.I. Churchill Livingstone: New Delhi, pp. 85-108 (2000).
I. Wiegand, K. Hilpert and R.E.W. Hancock, Nat. Protoc., 3, 163 (2008); https://doi.org/10.1038/nprot.2007.521
Z. Moradi Alvand, H.R. Rajabi, A. Mirzaei and A. Masoumiasl, New J. Chem., 43, 15126 (2019); https://doi.org/10.1039/C9NJ03144H
P. Sharma, S. Pant, V. Dave, K. Tak, V. Sadhu and K.R. Reddy, J. Microbiol. Methods, 160, 107 (2019); https://doi.org/10.1016/j.mimet.2019.03.007
A. Misra, S. Jain, D. Kishore, V. Dave, K.R. Reddy, V. Sadhu, J. Dwivedi and S. Sharma, J. Microbiol. Methods, 163, 105648 (2019); https://doi.org/10.1016/j.mimet.2019.105648
A. Nagaraja, M.D. Jalageri, Y.M. Puttaiahgowda, K. Raghava Reddy and A.V. Raghu, J. Microbiol. Methods, 163, 105650 (2019); https://doi.org/10.1016/j.mimet.2019.105650
H.R. Rajabi, R. Naghiha, M. Kheirizadeh, H. Sadatfaraji, A. Mirzaei and Z.M. Alvand, Mater. Sci. Eng. C, 78, 1109 (2017); https://doi.org/10.1016/j.msec.2017.03.090
G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell and A.J. Olson, J. Comput. Chem., 30, 2785 (2009); https://doi.org/10.1002/jcc.21256
R.H. Wade and A.A. Hyman, Curr. Opin. Cell Biol., 9, 12 (1997); https://doi.org/10.1016/S0955-0674(97)80146-9
E. Nogales, Cell. Mol. Life Sci., 56, 133 (1999); https://doi.org/10.1007/s000180050012
R.A. Stanton, K.M. Gernert, J.H. Nettles and R. Aneja, Med. Res. Rev., 31, 443 (2011); https://doi.org/10.1002/med.20242
S. Gupta and B. Bhattacharyya, Mol. Cell. Biochem., 253, 41 (2003); https://doi.org/10.1023/A:1026045100219
B.V. Kumbhar and V.V. Bhandare, J. Biomol. Struct. Dyn., (2020); https://doi.org/10.1080/07391102.2020.1745689
J.P. Snyder, J.H. Nettles, B. Cornett, K.H. Downing and E. Nogales, Proc. Natl. Acad. Sci. USA, 98, 5312 (2001); https://doi.org/10.1073/pnas.051309398
J. Löwe, H. Li, K.H. Downing and E. Nogales, J. Mol. Biol., 313, 1045 (2001); https://doi.org/10.1006/jmbi.2001.5077
M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek and G.R. Hutchison, J. Cheminform., 4, 17 (2012); https://doi.org/10.1186/1758-2946-4-17
B.V. Kumbhar, V.V. Bhandare, D. Panda and A. Kunwar, J. Biomol. Struct. Dyn., 38, 426 (2020); https://doi.org/10.1080/07391102.2019.1577174
W.L. DeLano, The PyMOL Molecular Graphics System, Version 1.1. Schrödinger LLC (2014); http://www.pymol.org https://doi.org/10.1038/hr.2014.17
W.J. Geary, Coord. Chem. Rev., 7, 81 (1971); https://doi.org/10.1016/S0010-8545(00)80009-0
V.V. Savant and C.C. Patel, J. Inorg. Nucl. Chem., 31, 2319 (1969); https://doi.org/10.1016/0022-1902(69)80561-0
M. Pervaiz, I. Ahmad, M. Yousaf, S. Kirn, A. Munawar, Z. Saeed, A. Adnan, T. Gulzar, T. Kamal, A. Ahmad and A. Rashid, Spectrochim. Acta A Mol. Biomol. Spectrosc., 206, 642 (2019); https://doi.org/10.1016/j.saa.2018.05.057
36 N. Raman, A. Kulandaisamy and K. Jeyasubramanian, Synth. React. Inorg. Met.-Org. Chem., 31, 1249 (2001); https://doi.org/10.1081/SIM-100106862
N. Sari, S. Arslan, E. Logoglu and I. Sakiyan, Gazi Univ. J. Sci., 16, 283 (2003).
G. Mohamed and Z. Abd El-Wahab, J. Therm. Anal. Calorim., 73, 347 (2003); https://doi.org/10.1023/A:1025126801265
A.S. Salameh and H.A. Tayim, Polyhedron, 2, 829 (1983); https://doi.org/10.1016/S0277-5387(00)87213-7
H.S. Seleem, B.A. El-Shetary and M. Shebl, Heteroatom Chem., 18, 100 (2007); https://doi.org/10.1002/hc.20239
M. Shebl and S.M.E. Khalil, Monatsh. Chem., 145, 146 (2015); https://doi.org/10.1007/s00706-014-1302-x
M. Shebl, J. Coord. Chem., 62, 3217 (2009); https://doi.org/10.1080/00958970903012785
M. Shebl, J. Mol. Struct., 1128, 79 (2017); https://doi.org/10.1016/j.molstruc.2016.08.056
P. Tyagi, S. Chandra and B.S. Saraswat, Spectrochim. Acta A Mol. Biomol. Spectrosc., 134, 200 (2015); https://doi.org/10.1016/j.saa.2014.06.112
D.P. Singh, R. Kumar, V. Malik and P. Tyagi, Transition Met. Chem., 32, 1051 (2007); https://doi.org/10.1007/s11243-007-0279-2
T.R. Rao and A. Prasad, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 35, 299 (2005); https://doi.org/10.1081/SIM-200055245
N.N. Greenwood and A. Earnshaw, Chemistry of the Elements. Heimemann, Oxford: UK, edn. 2 (1997).
T.R. Reddy and R. Srinivasan, J. Chem. Phys., 43, 1404 (1965); https://doi.org/10.1063/1.1696933
B.T. Thaker, P.K. Tandel, A.S. Patel, C.J. Vyas, M.S. Jesani and D.M. Patel, Indian J. Chem., 44A, 265 (2005).
H.F. El-Shafiy and M. Shebl, J. Mol. Struct., 1156, 403 (2018); https://doi.org/10.1016/j.molstruc.2017.11.081
M. Shebl, Spectrochim. Acta A Mol. Biomol. Spectrosc., 73, 313 (2009); https://doi.org/10.1016/j.saa.2009.02.030
H.F. El-Shafiy and M. Shebl, J. Mol. Struct., 1194, 187 (2019); https://doi.org/10.1016/j.molstruc.2019.05.063