Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Source Apportionment of PM2.5 Bound PAHs in Tropical Tiruchirappalli City, India
Corresponding Author(s) : Arun Marimuthu
Asian Journal of Chemistry,
Vol. 31 No. 7 (2019): Vol 31 Issue 7
Abstract
The aim of this study is to investigate the distribution and sources of polycyclic aromatic hydrocarbons (PAHs) as per the priority list of USEPA, bound to fine particulate matter (PM2.5) prevalent in Tiruchirappalli, an urban city of India. The sampling was carried out for 24 h continuously in each station to study the PM2.5 deposition. The PAHs deposited on the filter paper was estimated using ultrasonic centrifuge solid-phase extraction method and further analyzed with gas chromatography mass spectroscopy (GC-MS). The results showed that the range of PAHs concentrations in the study period was between 1.0 and 90.20 ng/m3. The seasonal variation of all the 16 PAHs varied from 38.78 ng/m3 in monsoon, 32.06 ng/m3 in winter,12.54 ng/m3 in summer and 8.88 ng/m3 pre-monsoon. The annual average concentration of PAHs observed was 22.51 ng/m3 with PAHs of higher molecular weight in abundance accounting for almost 90.81 % while the PAHs of lower molecular weight contributing to 9.23 %.Higher PAHs levels of 35.41 ng/m3 were recorded during cold months followed by 10.71 ng/m3 during warm months. Diagnostic ratio source analysis and principal component analysis established that vehicular emissions and off-road combustion sources were the major sources. The mean benzo(a)pyrene toxicity equivalent calculated for samples was 2.83 ng/m3 and the mean contribution of the carcinogenic potency of benzo(a)pyrene was observed to be 41.13 %.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Gulia, S.M. Shiva Nagendra, M. Khare and I. Khanna, Atmos. Pollut. Res., 6, 286 (2015); https://doi.org/10.5094/APR.2015.033.
- J. Liu, R. Man, S. Ma, J. Li, Q. Wu and J. Peng, Mar. Pollut. Bull., 100, 134 (2015); https://doi.org/10.1016/j.marpolbul.2015.09.014.
- J.J. Swanson, W.F. Watts, R.A. Newman, R.R. Ziebarth and D.B. Kittelson, Environ. Sci. Technol., 47, 4521 (2013); https://doi.org/10.1021/es304971h.
- A. Valavanidis, K. Fiotakis and T. Vlachogianni, J. Environ. Sci. Health Part C, 26, 339 (2008); https://doi.org/10.1080/10590500802494538.
- P. Perez, E. Fernandez and R. Beiras, Water Air Soil Pollut., 209, 345 (2010); https://doi.org/10.1007/s11270-009-0203-9.
- V. Singla, T. Pachauri, A. Satsangi, K.M. Kumari and A. Lakhani, Polycycl. Aromat. Compd., 32, 199 (2012); https://doi.org/10.1080/10406638.2012.657740.
- J. Niu, Dai H., J. Xu and Z. Shen, J. Hazard. Mater., 248–249, 254 (2013).
- X.T. Wang, Y. Miao, Y. Zhang, Y.-C. Li, M.-H. Wu and G. Yu, Sci. Total Environ., 447, 80 (2013); https://doi.org/10.1016/j.scitotenv.2012.12.086.
- S.M. Horaginamani and M. Ravichandran, Indian J. Environ. Ecoplan, 16, 189 (2009).
- L. Xu, X. Chen, J. Chen, F. Zhang, C. He, J. Zhao and L. Yin, Atmos. Res., 104–105, 264 (2012); https://doi.org/10.1016/j.atmosres.2011.10.017.
- M.S. Alam, J.M. Delgado-Saborit, C. Stark and R.M. Harrison, Atmos. Environ., 77, 24 (2013); https://doi.org/10.1016/j.atmosenv.2013.04.068.
- B. Zielinska, J. Sagebiel, W.P. Arnott, C.F. Rogers, K.E. Kelly, D.A. Wagner, J.S. Lighty, A.F. Sarofim and G. Palmer, Environ. Sci. Technol., 38, 2557 (2004); https://doi.org/10.1021/es030518d.
- G.C. Fang, Y.S. Wu, J.C. Chen, P.P.C. Fu, C.N. Chang, T.T. Ho and M.H. Chen, Chemosphere, 60, 427 (2005); https://doi.org/10.1016/j.chemosphere.2004.12.034.
- Y. Liu, S. Tao,Y. Yang, H. Dou, Y. Yang and R.M. Coveney, Sci. Total Environ., 383, 98 (2007); https://doi.org/10.1016/j.scitotenv.2007.05.008.
- G. Wang, L. Huang, Xin Zhao, H. Niu and Z. Dai, Atmos. Res., 81, 54 (2006); https://doi.org/10.1016/j.atmosres.2005.11.004.
- F. Halek, M. Kianpour-rad and A. Kavousi, Environ. Chem. Lett., 8, 39 (2010); https://doi.org/10.1007/s10311-008-0188-4.
- A. Masih, R. Saini, R. Singhvi and A. Taneja, Environ. Monit. Assess., 163, 421 (2010); https://doi.org/10.1007/s10661-009-0846-4.
- S.S. Park, Y.J. Kim and C.H. Kang, Atmos. Environ., 36, 2917 (2002); https://doi.org/10.1016/S1352-2310(02)00206-6.
- R. Mohanraj and P.A. Azeez, Resonance J. Sci. Educ., 8, 20 (2003).
- R. Mohanraj, S. Dhanakumar and G. Solaraj, The Scientific World J., 2012, Article ID 980843 (2012); https://doi.org/10.1100/2012/980843.
- T. Ohura, T. Amagai, M. Fusaya and H. Matsushita, Environ. Sci. Technol., 38, 77 (2004); https://doi.org/10.1021/es030512o.
- A.M. Caricchia, S. Chiavarini and M. Pezza, Atmos. Environ., 33, 3731 (1999); https://doi.org/10.1016/S1352-2310(99)00199-5.
- E. Sanderson, Atmos. Environ., 38, 3417 (2004); https://doi.org/10.1016/j.atmosenv.2004.03.026.
- A. Eiguren-Fernandez, A.H. Miguel, J. Froines, R.S. Thurairatnam and E.L. Avol, Aerosol Sci. Technol., 38, 447 (2004) https://doi.org/10.1080/02786820490449511.
- J. Li, G. Zhang, X.D. Li, S.H. Qi, G.Q. Liu and X.Z. Peng, Sci. Total Environ., 355, 145 (2006); https://doi.org/10.1016/j.scitotenv.2005.02.042.
- J.H. Tan, X.H. Bi, J.C. Duan, K.A. Rahn, G.Y. Sheng and J.M. Fu, Atmos. Res., 80, 250 (2006); https://doi.org/10.1016/j.atmosres.2005.09.004.
- H.S. Hong, H.L.G. Yin, X.H. Wang and C.X. Ye, Atmos. Res., 85, 429 (2007); https://doi.org/10.1016/j.atmosres.2007.03.004.
- K. Karar and A.K. Gupta, Atmos. Res., 81, 36 (2006); https://doi.org/10.1016/j.atmosres.2005.11.003.
- K. Ravindra, R. Sokhi and R. Vangrieken, Atmos. Environ., 42, 2895 (2008); https://doi.org/10.1016/j.atmosenv.2007.12.010.
- J.F. Müller, D.W. Hawker and D.W. Connell, Chemosphere, 37, 1369 (1998); https://doi.org/10.1016/S0045-6535(98)00119-2.
- K.H. Kim, S.A. Jahan, E. Kabir and R.J. Brown, Environ. Int., 60, 71 (2013); https://doi.org/10.1016/j.envint.2013.07.019.
- C. Nisbet and P. LaGoy, Regul. Toxicol. Pharmacol., 16, 290 (1992); https://doi.org/10.1016/0273-2300(92)90009-X.
- A. Katsoyiannis, A.J. Sweetman and K.C. Jones, Environ. Sci. Technol., 45, 8897 (2011); https://doi.org/10.1021/es202277u.
- R.J. De La Torre-Roche, W.-Y. Lee and S.I. Campos-Díaz, J. Hazard. Mater., 163, 946 (2009); https://doi.org/10.1016/j.jhazmat.2008.07.089.
- M.A. Sicre, J.C. Marty, A. Saliot, X. Aparicio, J. Grimalt and J. Albaiges, Atmos. Environ., 21, 2247 (1987); https://doi.org/10.1016/0004-6981(87)90356-8.
- M.B. Yunker, R.W. Macdonald, R. Vingarzan, R.H. Mitchell, D. Goyette and S. Sylvestre, Org. Geochem., 33, 489 (2002); https://doi.org/10.1016/S0146-6380(02)00002-5.
- C. Alves, C. Pio and A. Duarte, Atmos. Environ., 35, 5485 (2001); https://doi.org/10.1016/S1352-2310(01)00243-6.
- C. Oliveira, N. Martins, J. Tavares, C. Pio, M. Cerqueira, M. Matos, H. Silva, C. Oliveira and F. Camões, Chemosphere, 83, 1588 (2011); https://doi.org/10.1016/j.chemosphere.2011.01.011.
- R.K. Larsen and J.E. Baker, Environ. Sci. Technol., 37, 1873 (2003); https://doi.org/10.1021/es0206184.
References
S. Gulia, S.M. Shiva Nagendra, M. Khare and I. Khanna, Atmos. Pollut. Res., 6, 286 (2015); https://doi.org/10.5094/APR.2015.033.
J. Liu, R. Man, S. Ma, J. Li, Q. Wu and J. Peng, Mar. Pollut. Bull., 100, 134 (2015); https://doi.org/10.1016/j.marpolbul.2015.09.014.
J.J. Swanson, W.F. Watts, R.A. Newman, R.R. Ziebarth and D.B. Kittelson, Environ. Sci. Technol., 47, 4521 (2013); https://doi.org/10.1021/es304971h.
A. Valavanidis, K. Fiotakis and T. Vlachogianni, J. Environ. Sci. Health Part C, 26, 339 (2008); https://doi.org/10.1080/10590500802494538.
P. Perez, E. Fernandez and R. Beiras, Water Air Soil Pollut., 209, 345 (2010); https://doi.org/10.1007/s11270-009-0203-9.
V. Singla, T. Pachauri, A. Satsangi, K.M. Kumari and A. Lakhani, Polycycl. Aromat. Compd., 32, 199 (2012); https://doi.org/10.1080/10406638.2012.657740.
J. Niu, Dai H., J. Xu and Z. Shen, J. Hazard. Mater., 248–249, 254 (2013).
X.T. Wang, Y. Miao, Y. Zhang, Y.-C. Li, M.-H. Wu and G. Yu, Sci. Total Environ., 447, 80 (2013); https://doi.org/10.1016/j.scitotenv.2012.12.086.
S.M. Horaginamani and M. Ravichandran, Indian J. Environ. Ecoplan, 16, 189 (2009).
L. Xu, X. Chen, J. Chen, F. Zhang, C. He, J. Zhao and L. Yin, Atmos. Res., 104–105, 264 (2012); https://doi.org/10.1016/j.atmosres.2011.10.017.
M.S. Alam, J.M. Delgado-Saborit, C. Stark and R.M. Harrison, Atmos. Environ., 77, 24 (2013); https://doi.org/10.1016/j.atmosenv.2013.04.068.
B. Zielinska, J. Sagebiel, W.P. Arnott, C.F. Rogers, K.E. Kelly, D.A. Wagner, J.S. Lighty, A.F. Sarofim and G. Palmer, Environ. Sci. Technol., 38, 2557 (2004); https://doi.org/10.1021/es030518d.
G.C. Fang, Y.S. Wu, J.C. Chen, P.P.C. Fu, C.N. Chang, T.T. Ho and M.H. Chen, Chemosphere, 60, 427 (2005); https://doi.org/10.1016/j.chemosphere.2004.12.034.
Y. Liu, S. Tao,Y. Yang, H. Dou, Y. Yang and R.M. Coveney, Sci. Total Environ., 383, 98 (2007); https://doi.org/10.1016/j.scitotenv.2007.05.008.
G. Wang, L. Huang, Xin Zhao, H. Niu and Z. Dai, Atmos. Res., 81, 54 (2006); https://doi.org/10.1016/j.atmosres.2005.11.004.
F. Halek, M. Kianpour-rad and A. Kavousi, Environ. Chem. Lett., 8, 39 (2010); https://doi.org/10.1007/s10311-008-0188-4.
A. Masih, R. Saini, R. Singhvi and A. Taneja, Environ. Monit. Assess., 163, 421 (2010); https://doi.org/10.1007/s10661-009-0846-4.
S.S. Park, Y.J. Kim and C.H. Kang, Atmos. Environ., 36, 2917 (2002); https://doi.org/10.1016/S1352-2310(02)00206-6.
R. Mohanraj and P.A. Azeez, Resonance J. Sci. Educ., 8, 20 (2003).
R. Mohanraj, S. Dhanakumar and G. Solaraj, The Scientific World J., 2012, Article ID 980843 (2012); https://doi.org/10.1100/2012/980843.
T. Ohura, T. Amagai, M. Fusaya and H. Matsushita, Environ. Sci. Technol., 38, 77 (2004); https://doi.org/10.1021/es030512o.
A.M. Caricchia, S. Chiavarini and M. Pezza, Atmos. Environ., 33, 3731 (1999); https://doi.org/10.1016/S1352-2310(99)00199-5.
E. Sanderson, Atmos. Environ., 38, 3417 (2004); https://doi.org/10.1016/j.atmosenv.2004.03.026.
A. Eiguren-Fernandez, A.H. Miguel, J. Froines, R.S. Thurairatnam and E.L. Avol, Aerosol Sci. Technol., 38, 447 (2004) https://doi.org/10.1080/02786820490449511.
J. Li, G. Zhang, X.D. Li, S.H. Qi, G.Q. Liu and X.Z. Peng, Sci. Total Environ., 355, 145 (2006); https://doi.org/10.1016/j.scitotenv.2005.02.042.
J.H. Tan, X.H. Bi, J.C. Duan, K.A. Rahn, G.Y. Sheng and J.M. Fu, Atmos. Res., 80, 250 (2006); https://doi.org/10.1016/j.atmosres.2005.09.004.
H.S. Hong, H.L.G. Yin, X.H. Wang and C.X. Ye, Atmos. Res., 85, 429 (2007); https://doi.org/10.1016/j.atmosres.2007.03.004.
K. Karar and A.K. Gupta, Atmos. Res., 81, 36 (2006); https://doi.org/10.1016/j.atmosres.2005.11.003.
K. Ravindra, R. Sokhi and R. Vangrieken, Atmos. Environ., 42, 2895 (2008); https://doi.org/10.1016/j.atmosenv.2007.12.010.
J.F. Müller, D.W. Hawker and D.W. Connell, Chemosphere, 37, 1369 (1998); https://doi.org/10.1016/S0045-6535(98)00119-2.
K.H. Kim, S.A. Jahan, E. Kabir and R.J. Brown, Environ. Int., 60, 71 (2013); https://doi.org/10.1016/j.envint.2013.07.019.
C. Nisbet and P. LaGoy, Regul. Toxicol. Pharmacol., 16, 290 (1992); https://doi.org/10.1016/0273-2300(92)90009-X.
A. Katsoyiannis, A.J. Sweetman and K.C. Jones, Environ. Sci. Technol., 45, 8897 (2011); https://doi.org/10.1021/es202277u.
R.J. De La Torre-Roche, W.-Y. Lee and S.I. Campos-Díaz, J. Hazard. Mater., 163, 946 (2009); https://doi.org/10.1016/j.jhazmat.2008.07.089.
M.A. Sicre, J.C. Marty, A. Saliot, X. Aparicio, J. Grimalt and J. Albaiges, Atmos. Environ., 21, 2247 (1987); https://doi.org/10.1016/0004-6981(87)90356-8.
M.B. Yunker, R.W. Macdonald, R. Vingarzan, R.H. Mitchell, D. Goyette and S. Sylvestre, Org. Geochem., 33, 489 (2002); https://doi.org/10.1016/S0146-6380(02)00002-5.
C. Alves, C. Pio and A. Duarte, Atmos. Environ., 35, 5485 (2001); https://doi.org/10.1016/S1352-2310(01)00243-6.
C. Oliveira, N. Martins, J. Tavares, C. Pio, M. Cerqueira, M. Matos, H. Silva, C. Oliveira and F. Camões, Chemosphere, 83, 1588 (2011); https://doi.org/10.1016/j.chemosphere.2011.01.011.
R.K. Larsen and J.E. Baker, Environ. Sci. Technol., 37, 1873 (2003); https://doi.org/10.1021/es0206184.