Copyright (c) 2024 Reeja Gopalakrishnan Nair
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Characterization of LaFeO3@ZnS Core-Shell Nanocomposites as Photocatalyst for the Degradation of Methylene Blue Dye
Corresponding Author(s) : Reeja Gopalakrishnan Nair
Asian Journal of Chemistry,
Vol. 37 No. 1 (2025): Vol 37 Issue 1, 2025
Abstract
A two-step process involving hydrothermal and co-precipitation methods was used to synthesize core-shell nanoparticles of lanthanum ferrite @zinc sulphide (LaFeO3@ZnS), which were then characterized. The X-ray diffraction (XRD) patterns exhibiting distinct diffraction peaks corresponding to both LaFeO3 and ZnS components confirmed the synthesis of the nanocomposite. Transmission electron microscopy (TEM) images confirmed that the nanocomposite exhibited a core-shell structure. The photoluminescence quenching in LaFeO3@ZnS nanoparticles indicates a decrease in the recombination of photogenerated charge carriers. The photocatalytic degradation of methylene blue was assessed using LaFeO3@ZnS core-shell nanoparticles, which showed a considerable improvement in efficiency compared to the pure LaFeO3 and ZnS nanoparticles. This superior photocatalytic performance can be attributed to the synergistic interaction between the LaFeO3 core and ZnS shell, which led to increased absorption of visible light by the photocatalyst and longer lifetimes of the photogenerated charge carriers without undergoing recombination.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.M.S. Jorge, K.K. Athira, M.B. Alves, R.L. Gardas and J.F.B. Pereira, J. Water Process Eng., 55, 104125 (2023); https://doi.org/10.1016/j.jwpe.2023.104125
- D.A. Yaseen and M. Scholz, Int. J. Environ. Sci. Technol., 16, 1193 (2019); https://doi.org/10.1007/s13762-018-2130-z
- S. Suresh, Curr. Environ. Eng., 1, 162 (2015); https://doi.org/10.2174/2212717801666141021235246
- A.M. Subhi, J.A. Al-Najar and W.A.H. Noori, Glob. NEST J., 24, 451 (2022); https://doi.org/10.30955/gnj.004325
- M. Tripathi, S. Singh, S. Pathak, J. Kasaudhan, A. Mishra, S. Bala, D. Garg, R. Singh, P. Singh, P.K. Singh, A.K. Shukla and N. Pathak, Toxics, 11, 940 (2023); https://doi.org/10.3390/toxics11110940
- C. Kathing and G. Saini, Recent Progr. Mater., 4(4), 1 (2022); https://doi.org/10.21926/rpm.2204028
- P. Ahuja, S.K. Ujjain, R. Kanojia and P. Attri, J. Compos. Sci., 5, 82 (2021); https://doi.org/10.3390/jcs5030082
- D. Bhatia, N.R. Sharma, J. Singh and R.S. Kanwar, Crit. Rev. Environ. Sci. Technol., 47, 1836 (2017); https://doi.org/10.1080/10643389.2017.1393263
- G.E. Üstün, S.K.A. Solmaz and A. Birgül, Resour. Conserv. Recycling, 52, 425 (2007); https://doi.org/10.1016/j.resconrec.2007.05.006
- C.H. Liu, J.S. Wu, H.C. Chiu, S.Y. Suen and K.H. Chu, Water Res., 41, 1491 (2007); https://doi.org/10.1016/j.watres.2007.01.023
- M.T. Yagub, T.K. Sen, S. Afroze and H.M. Ang, Adv. Colloid Interface Sci., 209, 172 (2014); https://doi.org/10.1016/j.cis.2014.04.002
- E. Khelifi, H. Bouallagui, Y. Touhami, J.J. Godon and M. Hamdi, Desalination Water Treat., 2, 310 (2009); https://doi.org/10.5004/dwt.2009.294
- J. Kanagaraj, T. Senthilvelan and R.C. Panda, Clean Technol. Environ. Policy, 17, 1443 (2015); https://doi.org/10.1007/s10098-014-0869-6
- A. Pandey, P. Singh and L. Iyengar, Int. Biodeterior. Biodegradation, 59, 73 (2007); https://doi.org/10.1016/j.ibiod.2006.08.006
- Y. Su, D. Jassby, S. Song, X. Zhou, H. Zhao, J. Filip, E. Petala and Y. Zhang, Environ. Sci. Technol., 52, 6466 (2018); https://doi.org/10.1021/acs.est.8b00231
- L.N. Ukiwe, S.I. Ibeneme, C.E. Duru, B.N. Okolue, G.O. Onyedika and C.A. Nweze, J. Adv. Chem., 9, 2321 (2014); https://doi.org/10.24297/jac.v9i3.1006
- M. Riera-Torres, C. Gutiérrez-Bouzán and M. Crespi, Desalination, 252, 53 (2010); https://doi.org/10.1016/j.desal.2009.11.002
- M. Priyadarshini, I. Das, M.M. Ghangrekar and L. Blaney, J. Environ. Manage., 316, 115295 (2022); https://doi.org/10.1016/j.jenvman.2022.115295
- C.C. Amorim, M.M.D. Leão, R.F.P.M. Moreira, J.D. Fabris and A.B. Henriques, Chem. Eng. J., 224, 59 (2013); https://doi.org/10.1016/j.cej.2013.01.053
- S. Jayaraman and A.R. Warrier, Mater. Chem. Phys., 278, 125610 (2022); https://doi.org/10.1016/j.matchemphys.2021.125610
- Z.H. Jabbar and B.H. Graimed, J. Water Process Eng., 47, 102671 (2022); https://doi.org/10.1016/j.jwpe.2022.102671
- A.O. Ibhadon and P. Fitzpatrick, Catalysts, 3, 189 (2013); https://doi.org/10.3390/catal3010189
- M. Pawar, S. Topcu Sendoðdular and P. Gouma, J. Nanomater., 2018, 5953609 (2018); https://doi.org/10.1155/2018/5953609
- S. Gautam, H. Agrawal, M. Thakur, A. Akbari, H. Sharda, R. Kaur and M. Amini, J. Environ. Chem. Eng., 8, 103726 (2020); https://doi.org/10.1016/j.jece.2020.103726
- S. Munyai and N.C. Hintsho-Mbita, Curr. Res. Green Sustain. Chem., 4, 100163 (2021); https://doi.org/10.1016/j.crgsc.2021.100163
- L. Huang, X. Huang, J. Yan, Y. Liu, H. Jiang, H. Zhang, J. Tang and Q. Liu, J. Hazard. Mater., 442, 130024 (2023); https://doi.org/10.1016/j.jhazmat.2022.130024
- H. Jindal, D. Kumar, M. Sillanpaa and M. Nemiwal, Inorg. Chem. Commun., 131, 108786 (2021); https://doi.org/10.1016/j.inoche.2021.108786
- M.A. Hassaan, M.A. El-Nemr, M.R. Elkatory, S. Ragab, V.-C. Niculescu and A. El Nemr, Top. Curr. Chem., 381, 31 (2023); https://doi.org/10.1007/s41061-023-00444-7
- A.S.M. Nur, M. Sultana, A. Mondal, S. Islam, F.N. Robel, A. Islam and M.S.A. Sumi, J. Water Process Eng., 47, 102728 (2022); https://doi.org/10.1016/j.jwpe.2022.102728
- Z. Mirzaeifard, Z. Shariatinia, M. Jourshabani and S.M. Rezaei Darvishi, Ind. Eng. Chem. Res., 59, 15894 (2020); https://doi.org/10.1021/acs.iecr.0c03192
- M. Abd Elkodous, A.M. El-Khawaga, M.M. Abouelela and M.I.A. Abdel Maksoud, Sci. Rep., 13, 6331 (2023); https://doi.org/10.1038/s41598-023-33249-1
- Y. Wang, M. Sun, Y. Fang, S. Sun and J. He, J. Mater. Sci., 51, 779 (2016); https://doi.org/10.1007/s10853-015-9401-6
- N.M. Flores, U. Pal, R. Galeazzi and A. Sandoval, RSC Adv., 4, 41099 (2014); https://doi.org/10.1039/C4RA04522J
- S.B. Khan, M. Hou, S. Shuang and Z. Zhang, Appl. Surf. Sci., 400, 184 (2017); https://doi.org/10.1016/j.apsusc.2016.12.172
- H. Yang, Mater. Res. Bull., 142, 111406 (2021); https://doi.org/10.1016/j.materresbull.2021.111406
- J. Low, J. Yu, M. Jaroniec, S. Wageh and A.A. AlGhamdi, Adv. Mater., 29, 1601694 (2017); https://doi.org/10.1002/adma.201601694
- Q. Zhang, I. Lee, J.B. Joo, F. Zaera and Y. Yin, Acc. Chem. Res., 46, 1816 (2013); https://doi.org/10.1021/ar300230s
- T. Ren, Z. Jin, J. Yang, R. Hu, F. Zhao, X. Gao and C. Zhao, J. Hazard. Mater., 377, 195 (2019); https://doi.org/10.1016/j.jhazmat.2019.05.070
- M. Humayun, H. Ullah, M. Usman, A. Habibi-Yangjeh, A.A. Tahir, C. Wang and W. Luo, J. Energy Chem., 66, 314 (2022); https://doi.org/10.1016/j.jechem.2021.08.023
- J.E. Samaniego-Benitez, L. Lartundo-Rojas, A. García-García, H.A. Calderón and A. Mantilla, Catal. Today, 360, 99 (2021); https://doi.org/10.1016/j.cattod.2019.08.011
- T. Zhang, Y. Guo, C. Li, Y. Li, J. Li, F. Zhao and H. Ma, Adv. Powder Technol., 31, 4510 (2020); https://doi.org/10.1016/j.apt.2020.09.027
- P.S. Yoo, D. Amaranatha Reddy, Y.F. Jia, S.E. Bae, S. Huh and C. Liu, J. Colloid Interface Sci., 486, 136 (2017); https://doi.org/10.1016/j.jcis.2016.09.066
- F.T.L. Muniz, M.A.R. Miranda, C. Morilla dos Santos and J.M. Sasaki, Acta Crystallogr. A Found. Adv., 72, 385 (2016); https://doi.org/10.1107/S205327331600365X
- J.Y. Cheong, J.H. Chang, C. Kim, J. Lee, Y.S. Shim, S.J. Yoo, J.M. Yuk and I.D. Kim, ACS Appl. Energy Mater., 2, 2004 (2019); https://doi.org/10.1021/acsaem.8b02103
- J. Yu, J. Zhang and S. Liu, J. Phys. Chem. C, 114, 13642 (2010); https://doi.org/10.1021/jp101816c
- C. Mondal, A. Singh, R. Sahoo, A.K. Sasmal, Y. Negishi and T. Pal, New J. Chem., 39, 5628 (2015); https://doi.org/10.1039/C5NJ00128E
- L. Scholtz, L. Ladanyi and J. Mullerova, AEEE, 12, 631 (2015); https://doi.org/10.15598/aeee.v12i6.1078
- M.L. Myrick, M.N. Simcock, M. Baranowski, H. Brooke, S.L. Morgan and J.N. McCutcheon, Appl. Spectrosc. Rev., 46, 140 (2011); https://doi.org/10.1080/05704928.2010.537004
- X. Wang, J. Shi, Z. Feng, M. Li and C. Li, Phys. Chem. Chem. Phys., 13, 4715 (2011); https://doi.org/10.1039/c0cp01620a
- H. Shen, T. Xue, Y. Wang, G. Cao, Y. Lu and G. Fang, Mater. Res. Bull., 84, 15 (2016); https://doi.org/10.1016/j.materresbull.2016.07.024
- A.A. Hoseini, S. Farhadi, A. Zabardasti and F. Siadatnasab, RSC Advances, 9, 24489 (2019); https://doi.org/10.1039/C9RA04265B
- M.F. Mubarak, H. Selim and R. Elshypany, J. Environ. Health Sci. Eng., 20, 265 (2022); https://doi.org/10.1007/s40201-021-00774-y
- M. Ding, N. Yao, C. Wang, J. Huang, M. Shao, S. Zhang, P. Li, X. Deng and X. Xu, Nanoscale Res. Lett., 11, 205 (2016); https://doi.org/10.1186/s11671-016-1432-7
- D. Tekin, H. Kiziltas and H. Ungan, J. Mol. Liq., 306, 112905 (2020); https://doi.org/10.1016/j.molliq.2020.112905
- G. Rytwo and A.L. Zelkind, Catalysts, 12, 24 (2021); https://doi.org/10.3390/catal12010024
References
A.M.S. Jorge, K.K. Athira, M.B. Alves, R.L. Gardas and J.F.B. Pereira, J. Water Process Eng., 55, 104125 (2023); https://doi.org/10.1016/j.jwpe.2023.104125
D.A. Yaseen and M. Scholz, Int. J. Environ. Sci. Technol., 16, 1193 (2019); https://doi.org/10.1007/s13762-018-2130-z
S. Suresh, Curr. Environ. Eng., 1, 162 (2015); https://doi.org/10.2174/2212717801666141021235246
A.M. Subhi, J.A. Al-Najar and W.A.H. Noori, Glob. NEST J., 24, 451 (2022); https://doi.org/10.30955/gnj.004325
M. Tripathi, S. Singh, S. Pathak, J. Kasaudhan, A. Mishra, S. Bala, D. Garg, R. Singh, P. Singh, P.K. Singh, A.K. Shukla and N. Pathak, Toxics, 11, 940 (2023); https://doi.org/10.3390/toxics11110940
C. Kathing and G. Saini, Recent Progr. Mater., 4(4), 1 (2022); https://doi.org/10.21926/rpm.2204028
P. Ahuja, S.K. Ujjain, R. Kanojia and P. Attri, J. Compos. Sci., 5, 82 (2021); https://doi.org/10.3390/jcs5030082
D. Bhatia, N.R. Sharma, J. Singh and R.S. Kanwar, Crit. Rev. Environ. Sci. Technol., 47, 1836 (2017); https://doi.org/10.1080/10643389.2017.1393263
G.E. Üstün, S.K.A. Solmaz and A. Birgül, Resour. Conserv. Recycling, 52, 425 (2007); https://doi.org/10.1016/j.resconrec.2007.05.006
C.H. Liu, J.S. Wu, H.C. Chiu, S.Y. Suen and K.H. Chu, Water Res., 41, 1491 (2007); https://doi.org/10.1016/j.watres.2007.01.023
M.T. Yagub, T.K. Sen, S. Afroze and H.M. Ang, Adv. Colloid Interface Sci., 209, 172 (2014); https://doi.org/10.1016/j.cis.2014.04.002
E. Khelifi, H. Bouallagui, Y. Touhami, J.J. Godon and M. Hamdi, Desalination Water Treat., 2, 310 (2009); https://doi.org/10.5004/dwt.2009.294
J. Kanagaraj, T. Senthilvelan and R.C. Panda, Clean Technol. Environ. Policy, 17, 1443 (2015); https://doi.org/10.1007/s10098-014-0869-6
A. Pandey, P. Singh and L. Iyengar, Int. Biodeterior. Biodegradation, 59, 73 (2007); https://doi.org/10.1016/j.ibiod.2006.08.006
Y. Su, D. Jassby, S. Song, X. Zhou, H. Zhao, J. Filip, E. Petala and Y. Zhang, Environ. Sci. Technol., 52, 6466 (2018); https://doi.org/10.1021/acs.est.8b00231
L.N. Ukiwe, S.I. Ibeneme, C.E. Duru, B.N. Okolue, G.O. Onyedika and C.A. Nweze, J. Adv. Chem., 9, 2321 (2014); https://doi.org/10.24297/jac.v9i3.1006
M. Riera-Torres, C. Gutiérrez-Bouzán and M. Crespi, Desalination, 252, 53 (2010); https://doi.org/10.1016/j.desal.2009.11.002
M. Priyadarshini, I. Das, M.M. Ghangrekar and L. Blaney, J. Environ. Manage., 316, 115295 (2022); https://doi.org/10.1016/j.jenvman.2022.115295
C.C. Amorim, M.M.D. Leão, R.F.P.M. Moreira, J.D. Fabris and A.B. Henriques, Chem. Eng. J., 224, 59 (2013); https://doi.org/10.1016/j.cej.2013.01.053
S. Jayaraman and A.R. Warrier, Mater. Chem. Phys., 278, 125610 (2022); https://doi.org/10.1016/j.matchemphys.2021.125610
Z.H. Jabbar and B.H. Graimed, J. Water Process Eng., 47, 102671 (2022); https://doi.org/10.1016/j.jwpe.2022.102671
A.O. Ibhadon and P. Fitzpatrick, Catalysts, 3, 189 (2013); https://doi.org/10.3390/catal3010189
M. Pawar, S. Topcu Sendoðdular and P. Gouma, J. Nanomater., 2018, 5953609 (2018); https://doi.org/10.1155/2018/5953609
S. Gautam, H. Agrawal, M. Thakur, A. Akbari, H. Sharda, R. Kaur and M. Amini, J. Environ. Chem. Eng., 8, 103726 (2020); https://doi.org/10.1016/j.jece.2020.103726
S. Munyai and N.C. Hintsho-Mbita, Curr. Res. Green Sustain. Chem., 4, 100163 (2021); https://doi.org/10.1016/j.crgsc.2021.100163
L. Huang, X. Huang, J. Yan, Y. Liu, H. Jiang, H. Zhang, J. Tang and Q. Liu, J. Hazard. Mater., 442, 130024 (2023); https://doi.org/10.1016/j.jhazmat.2022.130024
H. Jindal, D. Kumar, M. Sillanpaa and M. Nemiwal, Inorg. Chem. Commun., 131, 108786 (2021); https://doi.org/10.1016/j.inoche.2021.108786
M.A. Hassaan, M.A. El-Nemr, M.R. Elkatory, S. Ragab, V.-C. Niculescu and A. El Nemr, Top. Curr. Chem., 381, 31 (2023); https://doi.org/10.1007/s41061-023-00444-7
A.S.M. Nur, M. Sultana, A. Mondal, S. Islam, F.N. Robel, A. Islam and M.S.A. Sumi, J. Water Process Eng., 47, 102728 (2022); https://doi.org/10.1016/j.jwpe.2022.102728
Z. Mirzaeifard, Z. Shariatinia, M. Jourshabani and S.M. Rezaei Darvishi, Ind. Eng. Chem. Res., 59, 15894 (2020); https://doi.org/10.1021/acs.iecr.0c03192
M. Abd Elkodous, A.M. El-Khawaga, M.M. Abouelela and M.I.A. Abdel Maksoud, Sci. Rep., 13, 6331 (2023); https://doi.org/10.1038/s41598-023-33249-1
Y. Wang, M. Sun, Y. Fang, S. Sun and J. He, J. Mater. Sci., 51, 779 (2016); https://doi.org/10.1007/s10853-015-9401-6
N.M. Flores, U. Pal, R. Galeazzi and A. Sandoval, RSC Adv., 4, 41099 (2014); https://doi.org/10.1039/C4RA04522J
S.B. Khan, M. Hou, S. Shuang and Z. Zhang, Appl. Surf. Sci., 400, 184 (2017); https://doi.org/10.1016/j.apsusc.2016.12.172
H. Yang, Mater. Res. Bull., 142, 111406 (2021); https://doi.org/10.1016/j.materresbull.2021.111406
J. Low, J. Yu, M. Jaroniec, S. Wageh and A.A. AlGhamdi, Adv. Mater., 29, 1601694 (2017); https://doi.org/10.1002/adma.201601694
Q. Zhang, I. Lee, J.B. Joo, F. Zaera and Y. Yin, Acc. Chem. Res., 46, 1816 (2013); https://doi.org/10.1021/ar300230s
T. Ren, Z. Jin, J. Yang, R. Hu, F. Zhao, X. Gao and C. Zhao, J. Hazard. Mater., 377, 195 (2019); https://doi.org/10.1016/j.jhazmat.2019.05.070
M. Humayun, H. Ullah, M. Usman, A. Habibi-Yangjeh, A.A. Tahir, C. Wang and W. Luo, J. Energy Chem., 66, 314 (2022); https://doi.org/10.1016/j.jechem.2021.08.023
J.E. Samaniego-Benitez, L. Lartundo-Rojas, A. García-García, H.A. Calderón and A. Mantilla, Catal. Today, 360, 99 (2021); https://doi.org/10.1016/j.cattod.2019.08.011
T. Zhang, Y. Guo, C. Li, Y. Li, J. Li, F. Zhao and H. Ma, Adv. Powder Technol., 31, 4510 (2020); https://doi.org/10.1016/j.apt.2020.09.027
P.S. Yoo, D. Amaranatha Reddy, Y.F. Jia, S.E. Bae, S. Huh and C. Liu, J. Colloid Interface Sci., 486, 136 (2017); https://doi.org/10.1016/j.jcis.2016.09.066
F.T.L. Muniz, M.A.R. Miranda, C. Morilla dos Santos and J.M. Sasaki, Acta Crystallogr. A Found. Adv., 72, 385 (2016); https://doi.org/10.1107/S205327331600365X
J.Y. Cheong, J.H. Chang, C. Kim, J. Lee, Y.S. Shim, S.J. Yoo, J.M. Yuk and I.D. Kim, ACS Appl. Energy Mater., 2, 2004 (2019); https://doi.org/10.1021/acsaem.8b02103
J. Yu, J. Zhang and S. Liu, J. Phys. Chem. C, 114, 13642 (2010); https://doi.org/10.1021/jp101816c
C. Mondal, A. Singh, R. Sahoo, A.K. Sasmal, Y. Negishi and T. Pal, New J. Chem., 39, 5628 (2015); https://doi.org/10.1039/C5NJ00128E
L. Scholtz, L. Ladanyi and J. Mullerova, AEEE, 12, 631 (2015); https://doi.org/10.15598/aeee.v12i6.1078
M.L. Myrick, M.N. Simcock, M. Baranowski, H. Brooke, S.L. Morgan and J.N. McCutcheon, Appl. Spectrosc. Rev., 46, 140 (2011); https://doi.org/10.1080/05704928.2010.537004
X. Wang, J. Shi, Z. Feng, M. Li and C. Li, Phys. Chem. Chem. Phys., 13, 4715 (2011); https://doi.org/10.1039/c0cp01620a
H. Shen, T. Xue, Y. Wang, G. Cao, Y. Lu and G. Fang, Mater. Res. Bull., 84, 15 (2016); https://doi.org/10.1016/j.materresbull.2016.07.024
A.A. Hoseini, S. Farhadi, A. Zabardasti and F. Siadatnasab, RSC Advances, 9, 24489 (2019); https://doi.org/10.1039/C9RA04265B
M.F. Mubarak, H. Selim and R. Elshypany, J. Environ. Health Sci. Eng., 20, 265 (2022); https://doi.org/10.1007/s40201-021-00774-y
M. Ding, N. Yao, C. Wang, J. Huang, M. Shao, S. Zhang, P. Li, X. Deng and X. Xu, Nanoscale Res. Lett., 11, 205 (2016); https://doi.org/10.1186/s11671-016-1432-7
D. Tekin, H. Kiziltas and H. Ungan, J. Mol. Liq., 306, 112905 (2020); https://doi.org/10.1016/j.molliq.2020.112905
G. Rytwo and A.L. Zelkind, Catalysts, 12, 24 (2021); https://doi.org/10.3390/catal12010024