Copyright (c) 2024 SHARAVAN KUMAR, BM PRAVEEN, Aralihalli sudhakara
This work is licensed under a Creative Commons Attribution 4.0 International License.
Advanced Synthetic Strategies for Progesterone: Combining trans-Hydrogenation and Rupe’s Rearrangement of 4-Androstenedione for Enhanced Yield
Corresponding Author(s) : Sharavan Kumar
Asian Journal of Chemistry,
Vol. 37 No. 1 (2025): Vol 37 Issue 1, 2025
Abstract
Progesterone, a steroid hormone, plays an important role in the human body, especially in the reproductive system. A unique, minimal, cost-effective and high yielding organic synthesis protocol for the synthesis of progesterone has been established. The proposed economical route utilizes low-cost and easily available hormone intermediate 4-androstenedione and acetylene gas, offering unique pathway to synthesize progesterone, which can be further scaled to the commercial level. The process starts with the synthesis of a propargylic alcohol intermediate from 4-androstenedione, yielding 93% through an improved procedure. Subsequently, this intermediate undergoes Rupe’s rearrangement, catalyzed by copper over an alumina catalyst, to form an enyne intermediate, which is then rehydrated to produce an enone with a 77% yield. The final step involves the selective reduction of an olefin bond via palladium-catalyzed trans-hydrogenation reaction, resulting in progesterone with a 75% yield. The final product is of pharmaceutical-grade purity as confirmed by HPLC analysis.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.C. Tuckey, Placenta, 26, 273 (2005); https://doi.org/10.1016/j.placenta.2004.06.012
- L. Kolatorova, J. Vitku, J. Suchopar, M. Hill and A. Parizek, Int. J. Mol. Sci., 23, 7989 (2022); https://doi.org/10.3390/ijms23147989
- K. Motomura, D. Miller, J. Galaz, T.N. Liu, R. Romero and N. Gomez-Lopez, J. Steroid Biochem. Mol. Biol., 229, 106254 (2023); https://doi.org/10.1016/j.jsbmb.2023.106254
- M.F. Balandrin, J.A. Klocke, E.S. Wurtele and W.H. Bollinger, Science, 228, 1154 (1985); https://doi.org/10.1126/science.3890182
- T. Yi, L.-L. Fan, H.-L. Chen, G.-Y. Zhu, H.-M. Suen, Y.-N. Tang, L. Zhu, C. Chu, Z.-Z. Zhao and H.-B. Chen, BMC Biochem., 15, 19 (2014); https://doi.org/10.1186/1471-2091-15-19
- G. Pelletier, Prog. Brain Res., 181, 193 (2010); https://doi.org/10.1016/S0079-6123(08)81011-4
- J. Simard, M.L. Ricketts, S. Gingras, P. Soucy, F.A. Feltus and M.H. Melner, Endocr. Rev., 26, 525 (2005); https://doi.org/10.1210/er.2002-0050
- B. Riegel and F.S. Prout, J. Org. Chem., 13, 933 (1948); https://doi.org/10.1021/jo01164a025
- D.A. Shepherd, R.A. Donia, J.A. Campbell, B.A. Johnson, R.P. Holysz, G. Slomp Jr., J.E. Stafford, R.L. Pederson and A.C. Ott, J. Am. Chem. Soc., 77, 1212 (1955); https://doi.org/10.1021/ja01610a036
- M. Schumacher, R. Hussain, N. Gago, J.-P. Oudinet, C. Mattern and A.M. Ghoumari, Front. Neurosci., 6, 10 (2012); https://doi.org/10.3389/fnins.2012.00010
- P.A. Sukerkar, K.W. MacRenaris, T.R. Townsend, R.A. Ahmed, J.E. Burdette and T.J. Meade, Bioconjug. Chem., 22, 2304 (2011); https://doi.org/10.1021/bc2003555
- J. Cui, Y. Shen and R. Li, Trends Mol. Med., 19, 197 (2013); https://doi.org/10.1016/j.molmed.2012.12.007
- M.-C. Giel, A.S. Barrow, C.J. Smedley, W. Lewis and J.E. Moses, Chem. Commun., 57, 6991 (2021); https://doi.org/10.1039/D1CC02257A
- L. Hintermann and A. Labonne, Synthesis, 2007, 1121 (2007); https://doi.org/10.1055/s-2007-966002
- M. Berthelot, Ann. Chim. Phys., 67, 52 (1863).
- H. Lagermarck and A. Eltekoff, Ber. Dtsch. Chem. Ges., 10, 637 (1877); https://doi.org/10.1002/cber.187701001177
References
R.C. Tuckey, Placenta, 26, 273 (2005); https://doi.org/10.1016/j.placenta.2004.06.012
L. Kolatorova, J. Vitku, J. Suchopar, M. Hill and A. Parizek, Int. J. Mol. Sci., 23, 7989 (2022); https://doi.org/10.3390/ijms23147989
K. Motomura, D. Miller, J. Galaz, T.N. Liu, R. Romero and N. Gomez-Lopez, J. Steroid Biochem. Mol. Biol., 229, 106254 (2023); https://doi.org/10.1016/j.jsbmb.2023.106254
M.F. Balandrin, J.A. Klocke, E.S. Wurtele and W.H. Bollinger, Science, 228, 1154 (1985); https://doi.org/10.1126/science.3890182
T. Yi, L.-L. Fan, H.-L. Chen, G.-Y. Zhu, H.-M. Suen, Y.-N. Tang, L. Zhu, C. Chu, Z.-Z. Zhao and H.-B. Chen, BMC Biochem., 15, 19 (2014); https://doi.org/10.1186/1471-2091-15-19
G. Pelletier, Prog. Brain Res., 181, 193 (2010); https://doi.org/10.1016/S0079-6123(08)81011-4
J. Simard, M.L. Ricketts, S. Gingras, P. Soucy, F.A. Feltus and M.H. Melner, Endocr. Rev., 26, 525 (2005); https://doi.org/10.1210/er.2002-0050
B. Riegel and F.S. Prout, J. Org. Chem., 13, 933 (1948); https://doi.org/10.1021/jo01164a025
D.A. Shepherd, R.A. Donia, J.A. Campbell, B.A. Johnson, R.P. Holysz, G. Slomp Jr., J.E. Stafford, R.L. Pederson and A.C. Ott, J. Am. Chem. Soc., 77, 1212 (1955); https://doi.org/10.1021/ja01610a036
M. Schumacher, R. Hussain, N. Gago, J.-P. Oudinet, C. Mattern and A.M. Ghoumari, Front. Neurosci., 6, 10 (2012); https://doi.org/10.3389/fnins.2012.00010
P.A. Sukerkar, K.W. MacRenaris, T.R. Townsend, R.A. Ahmed, J.E. Burdette and T.J. Meade, Bioconjug. Chem., 22, 2304 (2011); https://doi.org/10.1021/bc2003555
J. Cui, Y. Shen and R. Li, Trends Mol. Med., 19, 197 (2013); https://doi.org/10.1016/j.molmed.2012.12.007
M.-C. Giel, A.S. Barrow, C.J. Smedley, W. Lewis and J.E. Moses, Chem. Commun., 57, 6991 (2021); https://doi.org/10.1039/D1CC02257A
L. Hintermann and A. Labonne, Synthesis, 2007, 1121 (2007); https://doi.org/10.1055/s-2007-966002
M. Berthelot, Ann. Chim. Phys., 67, 52 (1863).
H. Lagermarck and A. Eltekoff, Ber. Dtsch. Chem. Ges., 10, 637 (1877); https://doi.org/10.1002/cber.187701001177