Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Analytical Solutions and Neural Network Modelling for Removal of Chromium(VI) from Industrial Wastewater using Carissa carandas
Corresponding Author(s) : P. Sirisha
Asian Journal of Chemistry,
Vol. 31 No. 7 (2019): Vol 31 Issue 7
Abstract
The main objective of this paper is to investigate and estimate the capacity of low cost bio-sorbent Carissa carandas in removing chromium from industrial wastewater using analytical techniques and artificial neural networks (ANN). As an application to real time wastewater treatment, in this paper, the adsorption capacity of Carissa carandas for the removal of Cr(VI) ions from local industrial wastewater was investigated using atomic adsorption spectroscopy (AAS), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). We proposed an artificial intelligent technique based radial basis function neural network, which is used to model the obtained experimental results to estimate the percentage removal of Cr(VI) for different unknown metal ion concentrations.The adsorption of Cr(VI) from local industrial wastewater by Carissa carandas prepared by chemical method. It was analyzed using Langmuir, Freundlich isotherms and pseudo-first and second order kinetic models. The percentage of adsorption was investigated using effect of adsorbent dose, initial adsorbate concentration, pH and contact time. The results obtained from the investigations show that the maximum adsorption of hexavalent chromium by Carissa carandas was found as 96 % at 5 ppm, 120 min, 1 g/L of adsorbent dosage and pH = 5 and 95.81 % through artificial neural networks for same parameters. As Carissa carandas is abundantly available free of cost at many places so this research outcome will be effectively and economically useful for the wellbeing of ocean and land environment.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.C. Nagajyoti, K.D. Lee and T.V.M. Sreekanth, Environ. Chem. Lett., 8, 199 (2010); https://doi.org/10.1007/s10311-010-0297-8.
- A.A. Belay, J. Environ. Prot., 1, 53 (2010); https://doi.org/10.4236/jep.2010.11007.
- S. Sushovan, S. Nandi and S. Dutta, Appl. Water Sci., 8, 148 (2018); https://doi.org/10.1007/s13201-018-0790-y.
- M. Junaid, M.Z. Hashmi, Y.-M. Tang, R.N. Malik and D.-S. Pei, Scient. Rep., 7, 8848 (2017); https://doi.org/10.1038/s41598-017-09075-7.
- S. Roy, L. Nagarchi, I. Das, J.M. Achuthananthan and S. Krishnamurthy, J. Toxicol., 2015, 504360 (2015). https://doi.org/10.1155/2015/504360.
- S. Sharma and P. Malaviya, Curr. World Environ., 9, 721 (2014); https://doi.org/10.12944/CWE.9.3.21.
- J. Febrianto, A.N. Kosasih, J. Sunarso, Y.-H. Ju, N. Indraswati and S. Ismadji, J. Hazard. Mater., 162, 616 (2009); https://doi.org/10.1016/j.jhazmat.2008.06.042.
- D. Krishna and R.P. Sree, Int. J. Appl. Sci. Eng., 12, 177 (2014).
- K. Anupam, S. Dutta, C. Bhattacharjee and S. Datta, Desalination Water Treat., 57, 3632 (2016); https://doi.org/10.1080/19443994.2014.987172.
- S.K. Sharma, S. Mahiya and G. Lofrano, Appl. Water Sci., 7, 1855 (2017); https://doi.org/10.1007/s13201-015-0359-y.
- S. Mahiya, S.K. Sharma and G. Lofrano, Cogent Environ. Sci., 2, 1218993 (2016); https://doi.org/10.1080/23311843.2016.1218993.
- S. Mahiya, G. Lofrano and S.K. Sharma, Chem. Sci. Trans., 3, 1228 (2014); https://doi.org/10.7598/cst2014.884.
- V.K. Veni and J.V. Rao, Int. J. Res. Eng. Appl. Manage., 18 (2018).
- P. Sirisha and S. Sultana, Int. J. Res. Anal. Rev., 5, 834 (2018).
- Y.S. Ho and G. McKay, Chem. Eng. J., 70, 115 (1998); https://doi.org/10.1016/S0923-0467(98)00076-1.
- Y.S. Ho and A.E. Ofomaja, J. Hazard. Mater., 129, 137 (2006); https://doi.org/10.1016/j.jhazmat.2005.08.020.
- P.G. Krishna, T.G. Manohar and F. Al-Namiy, Int. J. Electr. Electron. Eng. Res., 3, 261 (2013).
References
P.C. Nagajyoti, K.D. Lee and T.V.M. Sreekanth, Environ. Chem. Lett., 8, 199 (2010); https://doi.org/10.1007/s10311-010-0297-8.
A.A. Belay, J. Environ. Prot., 1, 53 (2010); https://doi.org/10.4236/jep.2010.11007.
S. Sushovan, S. Nandi and S. Dutta, Appl. Water Sci., 8, 148 (2018); https://doi.org/10.1007/s13201-018-0790-y.
M. Junaid, M.Z. Hashmi, Y.-M. Tang, R.N. Malik and D.-S. Pei, Scient. Rep., 7, 8848 (2017); https://doi.org/10.1038/s41598-017-09075-7.
S. Roy, L. Nagarchi, I. Das, J.M. Achuthananthan and S. Krishnamurthy, J. Toxicol., 2015, 504360 (2015). https://doi.org/10.1155/2015/504360.
S. Sharma and P. Malaviya, Curr. World Environ., 9, 721 (2014); https://doi.org/10.12944/CWE.9.3.21.
J. Febrianto, A.N. Kosasih, J. Sunarso, Y.-H. Ju, N. Indraswati and S. Ismadji, J. Hazard. Mater., 162, 616 (2009); https://doi.org/10.1016/j.jhazmat.2008.06.042.
D. Krishna and R.P. Sree, Int. J. Appl. Sci. Eng., 12, 177 (2014).
K. Anupam, S. Dutta, C. Bhattacharjee and S. Datta, Desalination Water Treat., 57, 3632 (2016); https://doi.org/10.1080/19443994.2014.987172.
S.K. Sharma, S. Mahiya and G. Lofrano, Appl. Water Sci., 7, 1855 (2017); https://doi.org/10.1007/s13201-015-0359-y.
S. Mahiya, S.K. Sharma and G. Lofrano, Cogent Environ. Sci., 2, 1218993 (2016); https://doi.org/10.1080/23311843.2016.1218993.
S. Mahiya, G. Lofrano and S.K. Sharma, Chem. Sci. Trans., 3, 1228 (2014); https://doi.org/10.7598/cst2014.884.
V.K. Veni and J.V. Rao, Int. J. Res. Eng. Appl. Manage., 18 (2018).
P. Sirisha and S. Sultana, Int. J. Res. Anal. Rev., 5, 834 (2018).
Y.S. Ho and G. McKay, Chem. Eng. J., 70, 115 (1998); https://doi.org/10.1016/S0923-0467(98)00076-1.
Y.S. Ho and A.E. Ofomaja, J. Hazard. Mater., 129, 137 (2006); https://doi.org/10.1016/j.jhazmat.2005.08.020.
P.G. Krishna, T.G. Manohar and F. Al-Namiy, Int. J. Electr. Electron. Eng. Res., 3, 261 (2013).