Copyright (c) 2024 Narinder Kumar, Shelly Bhardwaj, Neera Sharma, Amit Kumar
This work is licensed under a Creative Commons Attribution 4.0 International License.
Electronic Properties of Polymer-Grafted Nanoparticles: A Density Functional Theory Study
Corresponding Author(s) : Amit Kumar
Asian Journal of Chemistry,
Vol. 36 No. 9 (2024): Vol 36 Issue 9, 2024
Abstract
This study focuses on the density functional theory (DFT) analysis of five primary polymer-grafted nanoparticle systems viz. Au-PEG, SiO2-PS, TiO2-PMMA, Ag-PEG and ZnO-PVA. Utilizing DFT, the electronic properties of these systems were investigated through detailed density of states (DOS) and band structure calculations. The findings reveal that the Au-PEG and Ag-PEG exhibit metallic behaviour with significant states near the Fermi level, indicative of excellent electrical conductivity. In contrast, SiO2-PS, TiO2-PMMA and ZnO-PVA demonstrate insulating behaviour with distinct bandgaps, making them suitable for applications requiring reduced electrical conductivity. The DOS analysis underscores the substantial contribution of the metal or metal oxide cores near the Fermi level, while the polymer chains primarily contribute to higher energy regions, confirming their insulating nature. This comprehensive analysis provides valuable insights into the electronic interactions between polymers and nanoparticles, guiding the design and optimization of nanomaterials for various technological applications. The study also highlights potential possibilities for future research, including the development of enhanced computational models, experimental validation and the exploration of new polymer-nanoparticle combinations.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Malik, K. Muhammad and Y. Waheed, Molecules, 28, 661 (2023); https://doi.org/10.3390/molecules28020661
- B. Elzein, Heliyon, 10, e31393 (2024); https://doi.org/10.1016/j.heliyon.2024.e31393
- S.A. Ahire, AA. Bachhav, T.B. Pawar, B.S. Jagdale, A.V. Patil and P.B. Koli, Results Chem., 4, 100633 (2022); https://doi.org/10.1016/j.rechem.2022.100633
- N. Sakib, Ph.D. Thesis, Thermal and Rheological Characterization of Polystyrene and Polystyrene Grafted Silica Nanocomposites, Texas Tech University, Lubbock, Texas, USA (2021).
- P. Hohenberg and W. Kohn, Phys. Rev., 136(3B), B864 (1964); https://doi.org/10.1103/PhysRev.136.B864
- W. Kohn and L.J. Sham, Phys. Rev., 140(4A), A1133 (1965); https://doi.org/10.1103/PhysRev.140.A1133
- V.V. Ginzburg, Macromolecules, 46, 9798 (2013); https://doi.org/10.1021/ma402210v
- N.K. Hansoge, A. Gupta, H. White, A. Giuntoli and S. Keten, Macromolecules, 54, 3052 (2021); https://doi.org/10.1021/acs.macromol.0c02600
- A. Chremos, A.Z. Panagiotopoulos, H.-Y. Yu and D.L. Koch, J. Chem. Phys., 135, 114901 (2011); https://doi.org/10.1063/1.3638179
- V. Ganesan and A. Jayaraman, Soft Matter, 10, 13 (2014); https://doi.org/10.1039/C3SM51864G
- R.G. Parr and W. Yang. Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York, Oxford (1989).
- G. Kresse and J. Furthmüller, Phys. Rev. B Condens. Matter, 54, 11169 (1996); https://doi.org/10.1103/PhysRevB.54.11169
- G. Kresse and J. Hafner, Phys. Rev. B Condens. Matter, 47, 558 (1993); https://doi.org/10.1103/PhysRevB.47.558
- P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, R. Mazzarello, F. Mauri, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, R.M. Wentzcovitch and P. Umari, J. Phys. Condens. Matter, 21, 395502 (2009); https://doi.org/10.1088/0953-8984/21/39/395502
- J.P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996); https://doi.org/10.1103/PhysRevLett.77.3865
- G. Kresse and D. Joubert, Phys. Rev. B, 59, 1758 (1999); https://doi.org/10.1103/PhysRevB.59.1758
- H.J. Monkhorst and J.D. Pack, Phys. Rev. B, 13, 5188 (1976); https://doi.org/10.1103/PhysRevB.13.5188
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, and D.J. Fox, Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT (2016).
References
S. Malik, K. Muhammad and Y. Waheed, Molecules, 28, 661 (2023); https://doi.org/10.3390/molecules28020661
B. Elzein, Heliyon, 10, e31393 (2024); https://doi.org/10.1016/j.heliyon.2024.e31393
S.A. Ahire, AA. Bachhav, T.B. Pawar, B.S. Jagdale, A.V. Patil and P.B. Koli, Results Chem., 4, 100633 (2022); https://doi.org/10.1016/j.rechem.2022.100633
N. Sakib, Ph.D. Thesis, Thermal and Rheological Characterization of Polystyrene and Polystyrene Grafted Silica Nanocomposites, Texas Tech University, Lubbock, Texas, USA (2021).
P. Hohenberg and W. Kohn, Phys. Rev., 136(3B), B864 (1964); https://doi.org/10.1103/PhysRev.136.B864
W. Kohn and L.J. Sham, Phys. Rev., 140(4A), A1133 (1965); https://doi.org/10.1103/PhysRev.140.A1133
V.V. Ginzburg, Macromolecules, 46, 9798 (2013); https://doi.org/10.1021/ma402210v
N.K. Hansoge, A. Gupta, H. White, A. Giuntoli and S. Keten, Macromolecules, 54, 3052 (2021); https://doi.org/10.1021/acs.macromol.0c02600
A. Chremos, A.Z. Panagiotopoulos, H.-Y. Yu and D.L. Koch, J. Chem. Phys., 135, 114901 (2011); https://doi.org/10.1063/1.3638179
V. Ganesan and A. Jayaraman, Soft Matter, 10, 13 (2014); https://doi.org/10.1039/C3SM51864G
R.G. Parr and W. Yang. Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York, Oxford (1989).
G. Kresse and J. Furthmüller, Phys. Rev. B Condens. Matter, 54, 11169 (1996); https://doi.org/10.1103/PhysRevB.54.11169
G. Kresse and J. Hafner, Phys. Rev. B Condens. Matter, 47, 558 (1993); https://doi.org/10.1103/PhysRevB.47.558
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, R. Mazzarello, F. Mauri, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, R.M. Wentzcovitch and P. Umari, J. Phys. Condens. Matter, 21, 395502 (2009); https://doi.org/10.1088/0953-8984/21/39/395502
J.P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996); https://doi.org/10.1103/PhysRevLett.77.3865
G. Kresse and D. Joubert, Phys. Rev. B, 59, 1758 (1999); https://doi.org/10.1103/PhysRevB.59.1758
H.J. Monkhorst and J.D. Pack, Phys. Rev. B, 13, 5188 (1976); https://doi.org/10.1103/PhysRevB.13.5188
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, and D.J. Fox, Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT (2016).