Copyright (c) 2024 Praveena Panneer Selvam, Vadamalar Rathinam, Ameer Baig Ali Baig, R. Sagayaraj
This work is licensed under a Creative Commons Attribution 4.0 International License.
Enhanced Structural, Optical and Magnetic Properties of Cobalt-Doped Zinc Oxide Nanoparticles Synthesized via Co-Precipitation Method
Corresponding Author(s) : Vadamalar Rathinam
Asian Journal of Chemistry,
Vol. 36 No. 9 (2024): Vol 36 Issue 9, 2024
Abstract
This study reported the synthesis and characterization of cobalt-doped zinc oxide (Co-ZnO) nanoparticles using the co-precipitation method with a focus on their structural, optical and magnetic properties. Pure ZnO and Co-ZnO nanoparticles were synthesized and compared to evaluate the effects of cobalt doping. X-ray diffraction (XRD) analysis revealed that cobalt doping led to a reduction in peak intensities and an increase in lattice strain, indicating successful substitution of Co2+ ions into the ZnO lattice. The average particle size of Co-ZnO nanoparticles decreased from 9.41 nm to 3.82 nm, with a corresponding increase in specific surface area from 1.17 × 1014 m2/g for pure ZnO to 1.65 × 1014 m2/g for Co-ZnO. UV-visible spectroscopy showed a blue shift in the absorption edge for Co-ZnO nanoparticles, with an energy band gap of 3.36 eV compared to 3.25 eV for pure ZnO exhibiting enhanced UV absorption capabilities. Photoluminescence (PL) spectra highlighted the presence of violet-blue and blue-green emissions, suggesting improved photocatalytic properties due to Co doping. Transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX) confirmed the hexagonal shape and successful incorporation of cobalt ion into the ZnO lattice. Vibrating-sample magnetometry (VSM) measurements revealed a significant increase in magnetization for Co-ZnO nanoparticles demonstrating enhanced ferromagnetic properties with a magnetic moment of 0.5198 T. This study concludes that cobalt doping significantly enhances the structural, optical, magnetic and photocatalytic properties of ZnO nanoparticles, making them suitable for applications in photocatalysis, gas sensing and spintronics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.P. Barreto, G. Morales and M.L. López Quintanilla, J. Mater., 2013, 478681 (2013); https://doi.org/10.1155/2013/478681
- R. Yang, X. Qu and M.H. Wang, Micro & Nano Lett., 13, 1506 (2018); https://doi.org/10.1049/mnl.2018.0150
- P.S. Sundaram, T. Sangeetha, S. Rajakarthihan, R. Vijayalaksmi, A. Elangovan and G. Arivazhagan, Physica B, 595, 412342 (2020); https://doi.org/10.1016/j.physb.2020.412342
- M. Sarfraz, N. Ahmed, K. Ul-Haq, S. Shahida and M.A. Khan, Mater. Sci. Poland, 37, 280 (2019); https://doi.org/10.2478/msp-2019-0029
- V.V. Petrov, V.V. Sysoev, I.O. Ignatieva, I.A. Gulyaeva, M.G. Volkova, A.P. Ivanishcheva, S.A. Khubezhov, Y.N. Varzarev and E.M. Bayan, Sensors, 23, 5617 (2023); https://doi.org/10.3390/s23125617
- K. Kumar, M. Chitkara, I.S. Sandhu, D. Mehta and S. Kumar, J. Alloys Compd., 588, 681 (2014); https://doi.org/10.1016/j.jallcom.2013.11.127
- S. Senthilkumaar, K. Rajendran, S. Banerjee, T.K. Chini and V. Sengodan, Mater. Sci. Semicond. Process., 11, 6 (2008); https://doi.org/10.1016/j.mssp.2008.04.005
- R. Poongodi, S. Senguttuvan, S. Sebastian and R. Sagayaraj, J. Aust. Ceram. Soc., (2024); https://doi.org/10.1007/s41779-024-01057-z
- S.B. Rana, R.P.P. Singh and S. Arya, J. Mater. Sci. Mater. Electron., 28, 2660 (2017); https://doi.org/10.1007/s10854-016-5843-0
- M.K. Lima, D.M. Fernandes, M.F. Silva, M.L. Baesso, A.M. Neto, G.R. de Morais, C.V. Nakamura, A. de Oliveira Caleare, A.A.W. Hechenleitner and E.A.G. Pineda, J. Sol-Gel Sci. Technol., 72, 301 (2014); https://doi.org/10.1007/s10971-014-3310-z
- C.M. Vladu, O.-C. Mocioiu and E.M. Soare, Gels, 9, 424 (2023); https://doi.org/10.3390/gels9050424
- R. Karthik and S. Thambidurai, J. Alloys Compd., 715, 254 (2017); https://doi.org/10.1016/j.jallcom.2017.04.298
- N.M. Basith, J.J. Vijaya, L.J. Kennedy, M. Bououdina, S. Jenefar and V. Kaviyarasan, J. Mater. Sci. Technol., 30, 1108 (2014); https://doi.org/10.1016/j.jmst.2014.07.013
- C. Lei, N. Sun, H. Wu, Y. Zhao, C. Yu, B.J. Janani and A. Fakhri, Chemosphere, 308, 136375 (2022); https://doi.org/10.1016/j.chemosphere.2022.136375
- O.A. Zelekew, S.G. Aragaw, F.K. Sabir, D.M. Andoshe, A.D. Duma, D.-H. Kuo, X. Chen, T.D. Desissa, B.B. Tesfamariam, G.B. Feyisa, H. Abdullah, E.T. Bekele and F.G. Aga, Mater. Res. Express, 8, 025010 (2021); https://doi.org/10.1088/2053-1591/abe2d6
- A. Chanda, S. Gupta, M. Vasundhara, S.R. Joshi, G.R. Muttae and J. Singh, RSC Adv., 7, 50527 (2017); https://doi.org/10.1039/C7RA08458G
- A.I. Meky, M.A. Hassaan, H.A. Fetouh, A.M. Ismail and A. El Nemr, Sci. Rep., 13, 19329 (2023); https://doi.org/10.1038/s41598-023-46464-7
- Z. Liu, M.A. Hadi, D.S. Aljuboory, F.A. Ali, M.A. Jawad, A. Al-Alwany, S.K. Hadrawi, T. Mundher, Y. Riadi, R.F. Amer and A. Fakhri, J. Photochem. Photobiol. B Biol., 236, 112571 (2022); https://doi.org/10.1016/j.jphotobiol.2022.112571
- K.L. Foo, U. Hashim, K. Muhammad and C.H. Voon, Nanoscale Res. Lett., 9, 429 (2014); https://doi.org/10.1186/1556-276X-9-429
- A. Muhammad, M. Sajid, M.N. Khan, M. Sheraz, A. Khalid, P. Ahmad, S. Alotibi, H.M. Al-Saidi, N. Sobahi, M.M. Alam, S. Althahban, A.M. Saeedi and H.B. Albargi, PLoS One, 18, e0287322 (2023); https://doi.org/10.1371/journal.pone.0287322
- C.S. Jincy and P. Meena, Inorg. Chem. Commun., 120, 108145 (2020); https://doi.org/10.1016/j.inoche.2020.108145
- J. Hu, F. Gao, Z. Zhao, S. Sang, P. Li, W. Zhang, X. Zhou and Y. Chen, Appl. Surf. Sci., 363, 181 (2016); https://doi.org/10.1016/j.apsusc.2015.12.024
- R. Bairy, RSC Adv., 9, 22302 (2019); https://doi.org/10.1039/C9RA03006A
- B. Cullity, Elements of X-Ray Diffraction, Addison-Wesley Publ. Co. Inc., CA, USA, edn 2, p. 356 (1978).
- J.T. Adeleke, T. Theivasanthi, M. Thiruppathi, M. Swaminathan, T. Akomolafe and A.B. Alabi, Appl. Surf. Sci., 455, 195 (2018); https://doi.org/10.1016/j.apsusc.2018.05.184
- S. Ghosh, A. Ghosh, S. Pramanik, P.K. Kuiri, R. Sen and S.K. Neogi, J. Phys. Conf. Ser., 2349, 012014 (2022); https://doi.org/10.1088/1742-6596/2349/1/012014
- V.K. Sharma, M. Najim, A.K. Srivastava and G.D. Varma, J. Magn. Magn. Mater., 324, 683 (2012); https://doi.org/10.1016/j.jmmm.2011.08.061
- M. du Plessis, Phys. Status Solidi, 204, 2319 (2007); https://doi.org/10.1002/pssa.200622237
- R. Hepzi Pramila Devamani, M. Archana, K. Maheshwari and D. Susmitha, Int. J. Eng. Sci. Invent., 7, 58 (2018).
- H.A. Varudkar, L.H. Kathwate, M.B. Awale, S.D. Lokhande, G. Umadevi, J.S. Dargad and V.D. Mote, J. Aust. Ceram. Soc., 58, 793 (2022); https://doi.org/10.1007/s41779-022-00726-1
- T. Veeramani, C. Venkataraju, V. Porkalai and R. Sagayaraj, Asian J. Chem., 35, 2069 (2023); https://doi.org/10.14233/ajchem.2023.28041
- J. Roberts, An Introduction to Semiconductors and Quantum Confine-ment, In: Using Imperfect Semiconductor Systems for Unique Identifi-cation, Springer, Cham (2017); https://doi.org/10.1007/978-3-319-67891-7_2
- Y. Azizian-Kalandaragh, A. Khodayari, Z. Zeng, C.S. Garoufalis, S. Baskoutas and L.C. Gontard, J. Nanopart. Res., 15, 1388 (2013); https://doi.org/10.1007/s11051-012-1388-1
- Y. Feng, Y. Zhou, Y. Liu, G. Zhang and X. Zhang, J. Lumin., 119-120, 233 (2006); https://doi.org/10.1016/j.jlumin.2005.12.040
- M. Abdolkarimi-Mahabadi, A. Bayat and A. Mohammadi, Theor. Exp. Chem., 57, 191 (2021); https://doi.org/10.1007/s11237-021-09687-1
- A. Ghosh and R.N.P. Choudhary, J. Exp. Nanosci., 5, 134 (2010); https://doi.org/10.1080/17458080903321829
- H.S. Alanazi, N. Ahmad and F.A. Alharthi, RSC Adv., 11, 10194 (2021); https://doi.org/10.1039/D0RA10698D
- M. Adeel, M. Saeed, I. Khan, M. Muneer and N. Akram, ACS Omega, 6, 1426 (2021); https://doi.org/10.1021/acsomega.0c05092
- Z. Liu, C. Wang, J. Hou, P. Wang, L. Miao, B. Lv, Y. Yang, G. You, Y. Xu, M. Zhang and H. Ci, Environ. Sci. Pollut. Res. Int., 25, 31240 (2018); https://doi.org/10.1007/s11356-018-3123-7
- T.V.H. Luu, H.Y.X. Nguyen, Q.T. Nguyen, Q.B. Nguyen, T.H.C. Nguyen, N.C. Pham, X.D. Nguyen, T.K. Nguyen and N.N. Dao, RSC Adv., 14, 12954 (2024); https://doi.org/10.1039/D4RA00579A
- K.S. Babu, A.R. Reddy, C. Sujatha, K.V. Reddy and A.N. Mallika, J. Adv. Ceram., 2, 260 (2013); https://doi.org/10.1007/s40145-013-0069-6
- D. Mora-Fonz, J. Buckeridge, A.J. Logsdail, D.O. Scanlon, A.A. Sokol, S. Woodley and C.R.A. Catlow, J. Phys. Chem. C, 119, 11598 (2015); https://doi.org/10.1021/acs.jpcc.5b01331
- R.T. So, N.E. Blair and A.L. Masterson, Environ. Chem. Lett., 18, 1725 (2020); https://doi.org/10.1007/s10311-020-01027-4
- A. Saini, S. Kumar, H. Kaur, J. Gaur, G. Singh, M. Kaur, S. Kumar, R. Limbu, Supreet, R. Pal and N. Kaur, Interaction, 245, 174 (2024); https://doi.org/10.1007/s10751-024-02012-x
- X. Guo, L. Liu, J. Wu, J. Fan and Y. Wu, RSC Adv., 8, 4214 (2018); https://doi.org/10.1039/C7RA09894D
- C.C. Yu, K.Y. Chiang, M. Okuno, T. Seki, T. Ohto, X. Yu, V. Korepanov, H. Hamaguchi, M. Bonn, J. Hunger and Y. Nagata, Nat. Commun., 11, 5977 (2020); https://doi.org/10.1038/s41467-020-19759-w
- S. Kammoun and J.E. ghoul, J. Mater. Sci. Mater. Electron., 32, 7215 (2021); https://doi.org/10.1007/s10854-021-05430-7
- A. Modwi, K.K. Taha, L. Khezami, A.S. Al-Ayed, O.K. Al-Duaij, M. Khairy and M. Bououdina, J. Inorg. Organomet. Polym. Mater., 30, 2633 (2020); https://doi.org/10.1007/s10904-019-01425-4
- L. Chellappan, B. Thangaraj, N. Muthukurumban and V. Gurusamy, J. Fluoresc., (2024); https://doi.org/10.1007/s10895-024-03605-z
- A.F. AL Naim, A. Solieman and E.R. Shaaban, J. Mater. Sci. Mater. Electron., 31, 3613 (2020); https://doi.org/10.1007/s10854-020-02916-8
- K. Safeen, A. Safeen, D. Arif, W.H. Shah, A. Ali, G. Ali, F. Hussain, N. Imran, A. Ullah Shah, A. Alataway, A.Z. Dewidar, H.O. Elansary, M. Al-Yafrsi and K.S. Ahmad, Water, 15, 1470 (2023); https://doi.org/10.3390/w15081470
- P.Y. Zhang, R. Hiergeist, J. Lüdke, M. Albrecht and H.L. Ge, J. Appl. Phys., 108, 043905 (2010); https://doi.org/10.1063/1.3457105
- R. Sagayaraj, S. Aravazhi and G. Chandrasekaran, Int. Nano Lett., 11, 307 (2021); https://doi.org/10.1007/s40089-021-00343-z
- T.C. Ji, M.X. Pan, H.L. Ge, Q. Wu and P.-Y. Zhang, Rare Metals, 40, 1232 (2021); https://doi.org/10.1007/s12598-020-01405-5
- L.B. Arruda, D.M.G. Leite, M.O. Orlandi, W.A. Ortiz and P.N. Lisboa-Filho, J. Supercond. Nov. Magn., 26, 2515 (2013); https://doi.org/10.1007/s10948-012-1417-4
References
G.P. Barreto, G. Morales and M.L. López Quintanilla, J. Mater., 2013, 478681 (2013); https://doi.org/10.1155/2013/478681
R. Yang, X. Qu and M.H. Wang, Micro & Nano Lett., 13, 1506 (2018); https://doi.org/10.1049/mnl.2018.0150
P.S. Sundaram, T. Sangeetha, S. Rajakarthihan, R. Vijayalaksmi, A. Elangovan and G. Arivazhagan, Physica B, 595, 412342 (2020); https://doi.org/10.1016/j.physb.2020.412342
M. Sarfraz, N. Ahmed, K. Ul-Haq, S. Shahida and M.A. Khan, Mater. Sci. Poland, 37, 280 (2019); https://doi.org/10.2478/msp-2019-0029
V.V. Petrov, V.V. Sysoev, I.O. Ignatieva, I.A. Gulyaeva, M.G. Volkova, A.P. Ivanishcheva, S.A. Khubezhov, Y.N. Varzarev and E.M. Bayan, Sensors, 23, 5617 (2023); https://doi.org/10.3390/s23125617
K. Kumar, M. Chitkara, I.S. Sandhu, D. Mehta and S. Kumar, J. Alloys Compd., 588, 681 (2014); https://doi.org/10.1016/j.jallcom.2013.11.127
S. Senthilkumaar, K. Rajendran, S. Banerjee, T.K. Chini and V. Sengodan, Mater. Sci. Semicond. Process., 11, 6 (2008); https://doi.org/10.1016/j.mssp.2008.04.005
R. Poongodi, S. Senguttuvan, S. Sebastian and R. Sagayaraj, J. Aust. Ceram. Soc., (2024); https://doi.org/10.1007/s41779-024-01057-z
S.B. Rana, R.P.P. Singh and S. Arya, J. Mater. Sci. Mater. Electron., 28, 2660 (2017); https://doi.org/10.1007/s10854-016-5843-0
M.K. Lima, D.M. Fernandes, M.F. Silva, M.L. Baesso, A.M. Neto, G.R. de Morais, C.V. Nakamura, A. de Oliveira Caleare, A.A.W. Hechenleitner and E.A.G. Pineda, J. Sol-Gel Sci. Technol., 72, 301 (2014); https://doi.org/10.1007/s10971-014-3310-z
C.M. Vladu, O.-C. Mocioiu and E.M. Soare, Gels, 9, 424 (2023); https://doi.org/10.3390/gels9050424
R. Karthik and S. Thambidurai, J. Alloys Compd., 715, 254 (2017); https://doi.org/10.1016/j.jallcom.2017.04.298
N.M. Basith, J.J. Vijaya, L.J. Kennedy, M. Bououdina, S. Jenefar and V. Kaviyarasan, J. Mater. Sci. Technol., 30, 1108 (2014); https://doi.org/10.1016/j.jmst.2014.07.013
C. Lei, N. Sun, H. Wu, Y. Zhao, C. Yu, B.J. Janani and A. Fakhri, Chemosphere, 308, 136375 (2022); https://doi.org/10.1016/j.chemosphere.2022.136375
O.A. Zelekew, S.G. Aragaw, F.K. Sabir, D.M. Andoshe, A.D. Duma, D.-H. Kuo, X. Chen, T.D. Desissa, B.B. Tesfamariam, G.B. Feyisa, H. Abdullah, E.T. Bekele and F.G. Aga, Mater. Res. Express, 8, 025010 (2021); https://doi.org/10.1088/2053-1591/abe2d6
A. Chanda, S. Gupta, M. Vasundhara, S.R. Joshi, G.R. Muttae and J. Singh, RSC Adv., 7, 50527 (2017); https://doi.org/10.1039/C7RA08458G
A.I. Meky, M.A. Hassaan, H.A. Fetouh, A.M. Ismail and A. El Nemr, Sci. Rep., 13, 19329 (2023); https://doi.org/10.1038/s41598-023-46464-7
Z. Liu, M.A. Hadi, D.S. Aljuboory, F.A. Ali, M.A. Jawad, A. Al-Alwany, S.K. Hadrawi, T. Mundher, Y. Riadi, R.F. Amer and A. Fakhri, J. Photochem. Photobiol. B Biol., 236, 112571 (2022); https://doi.org/10.1016/j.jphotobiol.2022.112571
K.L. Foo, U. Hashim, K. Muhammad and C.H. Voon, Nanoscale Res. Lett., 9, 429 (2014); https://doi.org/10.1186/1556-276X-9-429
A. Muhammad, M. Sajid, M.N. Khan, M. Sheraz, A. Khalid, P. Ahmad, S. Alotibi, H.M. Al-Saidi, N. Sobahi, M.M. Alam, S. Althahban, A.M. Saeedi and H.B. Albargi, PLoS One, 18, e0287322 (2023); https://doi.org/10.1371/journal.pone.0287322
C.S. Jincy and P. Meena, Inorg. Chem. Commun., 120, 108145 (2020); https://doi.org/10.1016/j.inoche.2020.108145
J. Hu, F. Gao, Z. Zhao, S. Sang, P. Li, W. Zhang, X. Zhou and Y. Chen, Appl. Surf. Sci., 363, 181 (2016); https://doi.org/10.1016/j.apsusc.2015.12.024
R. Bairy, RSC Adv., 9, 22302 (2019); https://doi.org/10.1039/C9RA03006A
B. Cullity, Elements of X-Ray Diffraction, Addison-Wesley Publ. Co. Inc., CA, USA, edn 2, p. 356 (1978).
J.T. Adeleke, T. Theivasanthi, M. Thiruppathi, M. Swaminathan, T. Akomolafe and A.B. Alabi, Appl. Surf. Sci., 455, 195 (2018); https://doi.org/10.1016/j.apsusc.2018.05.184
S. Ghosh, A. Ghosh, S. Pramanik, P.K. Kuiri, R. Sen and S.K. Neogi, J. Phys. Conf. Ser., 2349, 012014 (2022); https://doi.org/10.1088/1742-6596/2349/1/012014
V.K. Sharma, M. Najim, A.K. Srivastava and G.D. Varma, J. Magn. Magn. Mater., 324, 683 (2012); https://doi.org/10.1016/j.jmmm.2011.08.061
M. du Plessis, Phys. Status Solidi, 204, 2319 (2007); https://doi.org/10.1002/pssa.200622237
R. Hepzi Pramila Devamani, M. Archana, K. Maheshwari and D. Susmitha, Int. J. Eng. Sci. Invent., 7, 58 (2018).
H.A. Varudkar, L.H. Kathwate, M.B. Awale, S.D. Lokhande, G. Umadevi, J.S. Dargad and V.D. Mote, J. Aust. Ceram. Soc., 58, 793 (2022); https://doi.org/10.1007/s41779-022-00726-1
T. Veeramani, C. Venkataraju, V. Porkalai and R. Sagayaraj, Asian J. Chem., 35, 2069 (2023); https://doi.org/10.14233/ajchem.2023.28041
J. Roberts, An Introduction to Semiconductors and Quantum Confine-ment, In: Using Imperfect Semiconductor Systems for Unique Identifi-cation, Springer, Cham (2017); https://doi.org/10.1007/978-3-319-67891-7_2
Y. Azizian-Kalandaragh, A. Khodayari, Z. Zeng, C.S. Garoufalis, S. Baskoutas and L.C. Gontard, J. Nanopart. Res., 15, 1388 (2013); https://doi.org/10.1007/s11051-012-1388-1
Y. Feng, Y. Zhou, Y. Liu, G. Zhang and X. Zhang, J. Lumin., 119-120, 233 (2006); https://doi.org/10.1016/j.jlumin.2005.12.040
M. Abdolkarimi-Mahabadi, A. Bayat and A. Mohammadi, Theor. Exp. Chem., 57, 191 (2021); https://doi.org/10.1007/s11237-021-09687-1
A. Ghosh and R.N.P. Choudhary, J. Exp. Nanosci., 5, 134 (2010); https://doi.org/10.1080/17458080903321829
H.S. Alanazi, N. Ahmad and F.A. Alharthi, RSC Adv., 11, 10194 (2021); https://doi.org/10.1039/D0RA10698D
M. Adeel, M. Saeed, I. Khan, M. Muneer and N. Akram, ACS Omega, 6, 1426 (2021); https://doi.org/10.1021/acsomega.0c05092
Z. Liu, C. Wang, J. Hou, P. Wang, L. Miao, B. Lv, Y. Yang, G. You, Y. Xu, M. Zhang and H. Ci, Environ. Sci. Pollut. Res. Int., 25, 31240 (2018); https://doi.org/10.1007/s11356-018-3123-7
T.V.H. Luu, H.Y.X. Nguyen, Q.T. Nguyen, Q.B. Nguyen, T.H.C. Nguyen, N.C. Pham, X.D. Nguyen, T.K. Nguyen and N.N. Dao, RSC Adv., 14, 12954 (2024); https://doi.org/10.1039/D4RA00579A
K.S. Babu, A.R. Reddy, C. Sujatha, K.V. Reddy and A.N. Mallika, J. Adv. Ceram., 2, 260 (2013); https://doi.org/10.1007/s40145-013-0069-6
D. Mora-Fonz, J. Buckeridge, A.J. Logsdail, D.O. Scanlon, A.A. Sokol, S. Woodley and C.R.A. Catlow, J. Phys. Chem. C, 119, 11598 (2015); https://doi.org/10.1021/acs.jpcc.5b01331
R.T. So, N.E. Blair and A.L. Masterson, Environ. Chem. Lett., 18, 1725 (2020); https://doi.org/10.1007/s10311-020-01027-4
A. Saini, S. Kumar, H. Kaur, J. Gaur, G. Singh, M. Kaur, S. Kumar, R. Limbu, Supreet, R. Pal and N. Kaur, Interaction, 245, 174 (2024); https://doi.org/10.1007/s10751-024-02012-x
X. Guo, L. Liu, J. Wu, J. Fan and Y. Wu, RSC Adv., 8, 4214 (2018); https://doi.org/10.1039/C7RA09894D
C.C. Yu, K.Y. Chiang, M. Okuno, T. Seki, T. Ohto, X. Yu, V. Korepanov, H. Hamaguchi, M. Bonn, J. Hunger and Y. Nagata, Nat. Commun., 11, 5977 (2020); https://doi.org/10.1038/s41467-020-19759-w
S. Kammoun and J.E. ghoul, J. Mater. Sci. Mater. Electron., 32, 7215 (2021); https://doi.org/10.1007/s10854-021-05430-7
A. Modwi, K.K. Taha, L. Khezami, A.S. Al-Ayed, O.K. Al-Duaij, M. Khairy and M. Bououdina, J. Inorg. Organomet. Polym. Mater., 30, 2633 (2020); https://doi.org/10.1007/s10904-019-01425-4
L. Chellappan, B. Thangaraj, N. Muthukurumban and V. Gurusamy, J. Fluoresc., (2024); https://doi.org/10.1007/s10895-024-03605-z
A.F. AL Naim, A. Solieman and E.R. Shaaban, J. Mater. Sci. Mater. Electron., 31, 3613 (2020); https://doi.org/10.1007/s10854-020-02916-8
K. Safeen, A. Safeen, D. Arif, W.H. Shah, A. Ali, G. Ali, F. Hussain, N. Imran, A. Ullah Shah, A. Alataway, A.Z. Dewidar, H.O. Elansary, M. Al-Yafrsi and K.S. Ahmad, Water, 15, 1470 (2023); https://doi.org/10.3390/w15081470
P.Y. Zhang, R. Hiergeist, J. Lüdke, M. Albrecht and H.L. Ge, J. Appl. Phys., 108, 043905 (2010); https://doi.org/10.1063/1.3457105
R. Sagayaraj, S. Aravazhi and G. Chandrasekaran, Int. Nano Lett., 11, 307 (2021); https://doi.org/10.1007/s40089-021-00343-z
T.C. Ji, M.X. Pan, H.L. Ge, Q. Wu and P.-Y. Zhang, Rare Metals, 40, 1232 (2021); https://doi.org/10.1007/s12598-020-01405-5
L.B. Arruda, D.M.G. Leite, M.O. Orlandi, W.A. Ortiz and P.N. Lisboa-Filho, J. Supercond. Nov. Magn., 26, 2515 (2013); https://doi.org/10.1007/s10948-012-1417-4