Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Kinetic Study of Acidic Hydrolysis of Carboxylate Ester with Hydroxamet Ions in Micellar Assemblies
Corresponding Author(s) : D.K. Pandey
Asian Journal of Chemistry,
Vol. 31 No. 7 (2019): Vol 31 Issue 7
Abstract
In present investigations, acid hydrolysis reaction represent the effect of nucleophile, surfactant and temperature on the specific condition. Hydrolysis of carboxylate ester (4-nitrophenylacetate) with hydroxamet ions as nucleophile (acetylhydroxamic acid and salicylhydroxamic acid) in presence of surfactant cationic, anionic and non-ionic (cetyl trimethylammonium bromide (CTAB), sodium lauryl sulphate (SLS) and Brij-35) at 27 and 40 ºC. The resultant data show the variation of acid concentration effect the reaction rate and nucleophile represent the various effects in the reaction medium. The various surfactant resultant data represent the order of reaction rate CTAB > SLS > Brij-35 and reaction rate is increases by the increasing of reaction temperature.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.E. Allen and D.W.C. MacMillan, Chem. Sci., 2012, 633 (2012). https://doi.org/10.1039/C2SC00907B.
- M. Shibasaki, M. Kanai, S. Matsunaga and N. Kumagai, Acc. Chem. Res., 42, 1117 (2009); https://doi.org/10.1021/ar9000108.
- M. Shibasaki and N. Yoshikawa, Chem. Rev., 102, 2187 (2002); https://doi.org/10.1021/cr010297z.
- M. Rubina, M. Conley and V. Gevorgyan, J. Am. Chem. Soc., 128, 5818 (2006); https://doi.org/10.1021/ja060085p.
- Y.J. Park, J.W. Park and C.H. Jun, Acc. Chem. Res., 41, 222 (2008); https://doi.org/10.1021/ar700133y.
- P. Sykes, A Guide Book to Mechanism in Organic Chemistry, Longman: London, edn 3 (1970).
- C.H. Rochester, Acidity Functions, Academic Press: London (1970).
- R.A. Larson and E.J. Weber, Reaction Mechanisms in Environmental Organic Chemistry, Lewis Publishers, pp 124-160 (1994).
- R.P. Schwarzenbach, P.M. Gschwend and D.M. Imboden, Environmental Organic Chemistry, Wiley-Interscience Publishers, pp 372-387 (1993).
- H. Maskill, Structure and Reactivity in Organic Chemistry, Oxford University Press: Oxford, Chap. 4, pp 58-68 (1999).
- H. Maskill, Structure and Reactivity in Organic Chemistry, Oxford University Press: Oxford, Chap. 4, pp 49-69 (1999).
- W.P. Jencks and J. Carriuolo, J. Am. Chem. Soc., 82, 1778 (1960); https://doi.org/10.1021/ja01492a058.
- K. Koehler, R. Skora and E.H. Cordes, J. Am. Chem. Soc., 88, 3577 (1966); https://doi.org/10.1021/ja00967a020.
- L.M. Schopfer, T. Voelker, C.F. Bartels, C.M. Thompson and O. Lockridge, Chem. Res. Toxicol., 18, 747 (2005); https://doi.org/10.1021/tx049672j.
- M.A.S. Khan, R. Lo, T. Bandyopadhyay and B. Ganguly, J. Mol. Graph. Model., 29, 1039 (2011); https://doi.org/10.1016/j.jmgm.2011.04.009.
- R.A. Moss, H. Morales-Rojas, S. Vijayaraghavan and J. Tian, J. Am. Chem. Soc., 126, 10923 (2004); https://doi.org/10.1021/ja030437h.
- S. Tiwari, K.K. Ghosh, J. Marek and K. Kuca, Drug Design Lett., 7, 194 (2010); https://doi.org/10.2174/157018010790596650.
- S. Muthukrishnan, V.S. Shete, T.T. Sanan, S. Vyas, S. Oottikkal, L.M. Porter, T.J. Magliery and C.M. Hadad, J. Phys. Org. Chem., 25, 1247 (2012); https://doi.org/10.1002/poc.3002.
- C. Yuan, S. Li and X. Liao, J. Phys. Org. Chem., 3, 48 (1990); https://doi.org/10.1002/poc.610030110.
- R.V. Vico, R.H. de Rossi and E.I. Buján, J. Phys. Org. Chem., 22, 691 (2009); https://doi.org/10.1002/poc.1502.
- I.M. Kovach, J. Phys. Org. Chem., 17, 602 (2004); https://doi.org/10.1002/poc.778.
- K.K. Ghosh, D. Sinha, M.L. Satnami, D.K. Dubey, P. RodriguezDafonte and G.L. Mundhara, Langmuir, 21, 8664 (2005); https://doi.org/10.1021/la051223b.
- B. Kumar, M.L. Satnami, K.K. Ghosh and K. Kuca, J. Phys. Org. Chem., 25, 864 (2012); https://doi.org/10.1002/poc.2935.
- V.K. Balakrishnan, X. Han, G.W. VanLoon, J.M. Dust, J. Toullec and E. Buncel, Langmuir, 20, 6586 (2004); https://doi.org/10.1021/la049572d.
- S. Tiwari, S. Kolay, K.K. Ghosh, K. Kuca and J. Marek, Int. J. Chem. Kinet., 41, 57 (2009); https://doi.org/10.1002/kin.20363.
References
A.E. Allen and D.W.C. MacMillan, Chem. Sci., 2012, 633 (2012). https://doi.org/10.1039/C2SC00907B.
M. Shibasaki, M. Kanai, S. Matsunaga and N. Kumagai, Acc. Chem. Res., 42, 1117 (2009); https://doi.org/10.1021/ar9000108.
M. Shibasaki and N. Yoshikawa, Chem. Rev., 102, 2187 (2002); https://doi.org/10.1021/cr010297z.
M. Rubina, M. Conley and V. Gevorgyan, J. Am. Chem. Soc., 128, 5818 (2006); https://doi.org/10.1021/ja060085p.
Y.J. Park, J.W. Park and C.H. Jun, Acc. Chem. Res., 41, 222 (2008); https://doi.org/10.1021/ar700133y.
P. Sykes, A Guide Book to Mechanism in Organic Chemistry, Longman: London, edn 3 (1970).
C.H. Rochester, Acidity Functions, Academic Press: London (1970).
R.A. Larson and E.J. Weber, Reaction Mechanisms in Environmental Organic Chemistry, Lewis Publishers, pp 124-160 (1994).
R.P. Schwarzenbach, P.M. Gschwend and D.M. Imboden, Environmental Organic Chemistry, Wiley-Interscience Publishers, pp 372-387 (1993).
H. Maskill, Structure and Reactivity in Organic Chemistry, Oxford University Press: Oxford, Chap. 4, pp 58-68 (1999).
H. Maskill, Structure and Reactivity in Organic Chemistry, Oxford University Press: Oxford, Chap. 4, pp 49-69 (1999).
W.P. Jencks and J. Carriuolo, J. Am. Chem. Soc., 82, 1778 (1960); https://doi.org/10.1021/ja01492a058.
K. Koehler, R. Skora and E.H. Cordes, J. Am. Chem. Soc., 88, 3577 (1966); https://doi.org/10.1021/ja00967a020.
L.M. Schopfer, T. Voelker, C.F. Bartels, C.M. Thompson and O. Lockridge, Chem. Res. Toxicol., 18, 747 (2005); https://doi.org/10.1021/tx049672j.
M.A.S. Khan, R. Lo, T. Bandyopadhyay and B. Ganguly, J. Mol. Graph. Model., 29, 1039 (2011); https://doi.org/10.1016/j.jmgm.2011.04.009.
R.A. Moss, H. Morales-Rojas, S. Vijayaraghavan and J. Tian, J. Am. Chem. Soc., 126, 10923 (2004); https://doi.org/10.1021/ja030437h.
S. Tiwari, K.K. Ghosh, J. Marek and K. Kuca, Drug Design Lett., 7, 194 (2010); https://doi.org/10.2174/157018010790596650.
S. Muthukrishnan, V.S. Shete, T.T. Sanan, S. Vyas, S. Oottikkal, L.M. Porter, T.J. Magliery and C.M. Hadad, J. Phys. Org. Chem., 25, 1247 (2012); https://doi.org/10.1002/poc.3002.
C. Yuan, S. Li and X. Liao, J. Phys. Org. Chem., 3, 48 (1990); https://doi.org/10.1002/poc.610030110.
R.V. Vico, R.H. de Rossi and E.I. Buján, J. Phys. Org. Chem., 22, 691 (2009); https://doi.org/10.1002/poc.1502.
I.M. Kovach, J. Phys. Org. Chem., 17, 602 (2004); https://doi.org/10.1002/poc.778.
K.K. Ghosh, D. Sinha, M.L. Satnami, D.K. Dubey, P. RodriguezDafonte and G.L. Mundhara, Langmuir, 21, 8664 (2005); https://doi.org/10.1021/la051223b.
B. Kumar, M.L. Satnami, K.K. Ghosh and K. Kuca, J. Phys. Org. Chem., 25, 864 (2012); https://doi.org/10.1002/poc.2935.
V.K. Balakrishnan, X. Han, G.W. VanLoon, J.M. Dust, J. Toullec and E. Buncel, Langmuir, 20, 6586 (2004); https://doi.org/10.1021/la049572d.
S. Tiwari, S. Kolay, K.K. Ghosh, K. Kuca and J. Marek, Int. J. Chem. Kinet., 41, 57 (2009); https://doi.org/10.1002/kin.20363.