Copyright (c) 2024 G. Gatawa, J. Nahurira, L. Gamaniel, V. Mayani, R. Thaker, S. Mayani
This work is licensed under a Creative Commons Attribution 4.0 International License.
Extraction of Nanocellulose Fiber from Agrowastes for Efficient Fluoride Removal: A Sustainable Approach
Corresponding Author(s) : S. Mayani
Asian Journal of Chemistry,
Vol. 36 No. 9 (2024): Vol 36 Issue 9, 2024
Abstract
The subject of water defluorination is becoming increasingly important, owing to chronic diseases such as fluorosis, neurological impairment and bone softening caused by fluoride contamination of drinking water in excess of 1.5 mg L–1. Agrowastes (cotton seed and groundnut shells), the commonly available and renewable resource, were used as the precursor for the production of nanocellulose fiber i.e. cotton seed nanocellulose fiber (CNF) and groundnut shell nanocellulose fiber (GNF) as an exceptional method for fluoride removal. The physico-chemical characterization techniques were employed to analyze the structure and morphology of the synthesized nanocellulose fibre. To optimize the adsorption process, the impacts of several parameters including pH, contact time and adsorbent dosage were evaluated. The maximum amount of fluoride that could be removed under ideal conditions was investigated using a UV-visible spectrophotometry and was found to be 90%. This approach offers several advantages such as low-cost raw materials, eco-friendly synthesis methods and a high-performance adsorbent.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Du, W. Liu, M. Zhang, C. Si, X. Zhang and B. Li, Carbohydr. Polym., 209, 130 (2019); https://doi.org/10.1016/j.carbpol.2019.01.020
- M. El Achaby, N. El Miri, A. Aboulkas, M. Zahouily, E. Bilal, A. Barakat and A. Solhy, Int. J. Biol. Macromol., 96, 340 (2017); https://doi.org/10.1016/j.ijbiomac.2016.12.040
- J.C. Bastidas, R. Venditti, J. Pawlak, R. Gilbert, S. Zauscher and J. Kadla, Carbohydr. Polym., 62, 369 (2005); https://doi.org/10.1016/j.carbpol.2005.08.058
- J.I. Morán, V.A. Alvarez, V.P. Cyras and A. Vázquez, Cellulose, 15, 149 (2008); https://doi.org/10.1007/s10570-007-9145-9
- L. Jasmania and W. Thielemans, Nanomedicine, 4, 14 (2018); https://doi.org/10.17352/2455-3492.000026
- R. Rani, A. Singh and W. Ahmad, Int. J. Health Clin. Res., 2, 1 (2019).
- N.A. Abdullah, M.S.A. Rani, M. Mohammad, M.H. Sainorudin, N. Asim, Z. Yaakob, H. Razali and Z. Emdadi, Polimery, 66, 155 (2021); https://doi.org/10.14314/pol i mer y.2021. 3.1
- S. Collazo-Bigliardi, R. Ortega-Toro and A. Chiralt Boix, Carbohydr. Polym., 191, 205 (2018); https://doi.org/10.1016/j.carbpol.2018.03.022
- S. Mateo, S. Peinado, F. Morillas-Gutiérrez, M.D. La Rubia and A.J. Moya, Processes, 9, 1594 (2021); https://doi.org/10.3390/pr9091594
- J.M. Yarbrough, M.E. Himmel and S.Y. Ding, Biotechnol. Biofuels, 2, 17 (2009); https://doi.org/10.1186/1754-6834-2-17
- R.J. Moon, A. Martini, J. Nairn, J. Simonsen and J. Youngblood, Chem. Soc. Rev., 40, 3941 (2011); https://doi.org/10.1039/c0cs00108b
- L. Brinchi, F. Cotana, E. Fortunati and J.M. Kenny, Carbohydr. Polym., 94, 154 (2013); https://doi.org/10.1016/j.carbpol.2013.01.033
- T. Theivasanthi, F.L. Anne Christma, A.J. Toyin, S.C.B. Gopinath and R. Ravichandran, Int. J. Biol. Macromol., 109, 832 (2018); https://doi.org/10.1016/j.ijbiomac.2017.11.054
- S. Eyley and W. Thielemans, Nanoscale, 6, 7764 (2014); https://doi.org/10.1039/C4NR01756K
- D. Trache, M.H. Hussin, M.K.M. Haafiz and V.K. Thakur, Nanoscale, 9, 1763 (2017); https://doi.org/10.1039/C6NR09494E
- K. Harini and C. Chandra Mohan, Int. J. Biol. Macromol., 163, 1375 (2020); https://doi.org/10.1016/j.ijbiomac.2020.07.239
- Z. Kassab, M. El Achaby, Y. Tamraoui, H. Sehaqui, R. Bouhfid and A.E.K. Qaiss, Int. J. Biol. Macromol., 136, 241 (2019); https://doi.org/10.1016/j.ijbiomac.2019.06.049
- M. Fazeli, M. Keley and E. Biazar, Int. J. Biol. Macromol., 116, 272 (2018); https://doi.org/10.1016/j.ijbiomac.2018.04.186
- A. Dufresne, Curr. Opin. Colloid Interface Sci., 29, 1 (2017); https://doi.org/10.1016/j.cocis.2017.01.004
- V. Nang An, H.T. Chi Nhan, T.D. Tap, T.T.T. Van, P. Van Viet and L. Van Hieu, J. Polym. Environ., 28, 1465 (2020); https://doi.org/10.1007/s10924-020-01695-x
- A.G. Souza, D.F. Santos, R.R. Ferreira, V.Z. Pinto and D.S. Rosa, Int. J. Biol. Macromol., 165, 1803 (2020); https://doi.org/10.1016/j.ijbiomac.2020.10.036
- R.M. Santos, W.P. Flauzino Neto, H.A. Silvério, D.F. Martins, N.O. Dantas and D. Pasquini, Ind. Crops Prod., 50, 707 (2013); https://doi.org/10.1016/j.indcrop.2013.08.049
- W.P.F. Neto, H.A. Silvério, N.O. Dantas and D. Pasquini, Ind. Crops Prod., 42, 480 (2013); https://doi.org/10.1016/j.indcrop.2012.06.041
- F. Rafieian, M. Shahedi, J. Keramat and J. Simonsen, Ind. Crops Prod., 53, 282 (2014); https://doi.org/10.1016/j.indcrop.2013.12.016
- C.S. Lee, J. Robinson and M.F. Chong, Process Saf. Environ. Prot., 92, 489 (2014); https://doi.org/10.1016/j.psep.2014.04.010
- J. Blockx, A. Verfaillie, O. Deschaume, C. Bartic, K. Muylaert and W. Thielemans, Nanoscale Adv., 3, 4133 (2021); https://doi.org/10.1039/D1NA00102G
- S.V. Mayani, S.P. Bhatt, D.S. Padariya and V.J. Mayani, Water Air Soil Pollut., 234, 466 (2023); https://doi.org/10.1007/s11270-023-06482-7
- M. Hashemkhani, M.R. Ghalhari, P. Bashardoust, S.S. Hosseini, A. Mesdaghinia and A.H. Mahvi, Sci. Rep., 12, 9655 (2022); https://doi.org/10.1038/s41598-022-13756-3
- E.H. Qua, P.R. Hornsby, H.S.S. Sharma and G. Lyons, J. Mater. Sci., 46, 6029 (2011); https://doi.org/10.1007/s10853-011-5565-x
- S. Lu, T. Ma, X. Hu, J. Zhao, X. Liao, Y. Song and X. Hu, J. Sci. Food Agric., 102, 312 (2022); https://doi.org/10.1002/jsfa.11360
- W. Li, R. Wang and S. Liu, BioRes., 6, 4271 (2011); https://doi.org/10.15376/biores.6.4.4271-4281
- A. Bhatnagar and M. Sain, J. Reinf. Plast. Compos., 24, 1259 (2005); https://doi.org/10.1177/0731684405049864
- R. Li, J. Fei, Y. Cai, Y. Li, J. Feng and J. Yao, Carbohydr. Polym., 76, 94 (2009); https://doi.org/10.1016/j.carbpol.2008.09.034
- B.O. Hong, F. Chen and G. Xue, Cellulose Chem. Technol., 50, 225 (2016).
- A.S. Amarasekara, B. Wiredu and Y.M. Lawrence, Carbohydr. Res., 475, 34 (2019); https://doi.org/10.1016/j.carres.2019.02.002
- M. Roman and W.T. Winter, Biomacromolecules, 5, 1671 (2004); https://doi.org/10.1021/bm034519+
- E.U.P. Barragán, C.F.C. Guerrero, A.M. Zamudio, A.B.M. Cepeda, T. Heinze and A. Koschella, Fibers Polym., 20, 1136 (2019); https://doi.org/10.1007/s12221-019-8973-1
- C. Wu, D.J. McClements, M. He, L. Zheng, T. Tian, F. Teng and Y. Li, Carbohydr. Polym., 255, 117364 (2021); https://doi.org/10.1016/j.carbpol.2020.117364
- B. Deepa, E. Abraham, N. Cordeiro, M. Mozetic, A.P. Mathew, K. Oksman, M. Faria, S. Thomas and L.A. Pothan, Cellulose, 22, 1075 (2015); https://doi.org/10.1007/s10570-015-0554-x
- A. Sonia and K. Priya Dasan, Carbohydr. Polym., 92, 668 (2013); https://doi.org/10.1016/j.carbpol.2012.09.015
- Z.Z. Chowdhury and S.B.A. Hamid, BioRes., 11, 3397 (2016); https://doi.org/10.15376/biores.11.2.3397-3415
- V.K. Gupta, I. Ali, T.A. Saleh, A. Nayak and S. Agarwal, RSC Adv., 2, 6380 (2012); https://doi.org/10.1039/C2RA20340E
- M.S. Onyango, Y. Kojima, O. Aoyi, E.C. Bernardo and H. Matsuda, J. Colloid Interface Sci., 279, 341 (2004); https://doi.org/10.1016/j.jcis.2004.06.038
- Y. Zhou, S. Fu, L. Zhang, H. Zhan and M.V. Levit, Carbohydr. Polym., 101, 75 (2014); https://doi.org/10.1016/j.carbpol.2013.08.055
- R. Singh, S.P. Raghuvanshi and C. Kaushik, Asian J. Chem., 20, 5818 (2008).
- D.J. Killedar and D.S. Bhargava, Indian J. Environ. Health, 35, 81 (1993).
References
H. Du, W. Liu, M. Zhang, C. Si, X. Zhang and B. Li, Carbohydr. Polym., 209, 130 (2019); https://doi.org/10.1016/j.carbpol.2019.01.020
M. El Achaby, N. El Miri, A. Aboulkas, M. Zahouily, E. Bilal, A. Barakat and A. Solhy, Int. J. Biol. Macromol., 96, 340 (2017); https://doi.org/10.1016/j.ijbiomac.2016.12.040
J.C. Bastidas, R. Venditti, J. Pawlak, R. Gilbert, S. Zauscher and J. Kadla, Carbohydr. Polym., 62, 369 (2005); https://doi.org/10.1016/j.carbpol.2005.08.058
J.I. Morán, V.A. Alvarez, V.P. Cyras and A. Vázquez, Cellulose, 15, 149 (2008); https://doi.org/10.1007/s10570-007-9145-9
L. Jasmania and W. Thielemans, Nanomedicine, 4, 14 (2018); https://doi.org/10.17352/2455-3492.000026
R. Rani, A. Singh and W. Ahmad, Int. J. Health Clin. Res., 2, 1 (2019).
N.A. Abdullah, M.S.A. Rani, M. Mohammad, M.H. Sainorudin, N. Asim, Z. Yaakob, H. Razali and Z. Emdadi, Polimery, 66, 155 (2021); https://doi.org/10.14314/pol i mer y.2021. 3.1
S. Collazo-Bigliardi, R. Ortega-Toro and A. Chiralt Boix, Carbohydr. Polym., 191, 205 (2018); https://doi.org/10.1016/j.carbpol.2018.03.022
S. Mateo, S. Peinado, F. Morillas-Gutiérrez, M.D. La Rubia and A.J. Moya, Processes, 9, 1594 (2021); https://doi.org/10.3390/pr9091594
J.M. Yarbrough, M.E. Himmel and S.Y. Ding, Biotechnol. Biofuels, 2, 17 (2009); https://doi.org/10.1186/1754-6834-2-17
R.J. Moon, A. Martini, J. Nairn, J. Simonsen and J. Youngblood, Chem. Soc. Rev., 40, 3941 (2011); https://doi.org/10.1039/c0cs00108b
L. Brinchi, F. Cotana, E. Fortunati and J.M. Kenny, Carbohydr. Polym., 94, 154 (2013); https://doi.org/10.1016/j.carbpol.2013.01.033
T. Theivasanthi, F.L. Anne Christma, A.J. Toyin, S.C.B. Gopinath and R. Ravichandran, Int. J. Biol. Macromol., 109, 832 (2018); https://doi.org/10.1016/j.ijbiomac.2017.11.054
S. Eyley and W. Thielemans, Nanoscale, 6, 7764 (2014); https://doi.org/10.1039/C4NR01756K
D. Trache, M.H. Hussin, M.K.M. Haafiz and V.K. Thakur, Nanoscale, 9, 1763 (2017); https://doi.org/10.1039/C6NR09494E
K. Harini and C. Chandra Mohan, Int. J. Biol. Macromol., 163, 1375 (2020); https://doi.org/10.1016/j.ijbiomac.2020.07.239
Z. Kassab, M. El Achaby, Y. Tamraoui, H. Sehaqui, R. Bouhfid and A.E.K. Qaiss, Int. J. Biol. Macromol., 136, 241 (2019); https://doi.org/10.1016/j.ijbiomac.2019.06.049
M. Fazeli, M. Keley and E. Biazar, Int. J. Biol. Macromol., 116, 272 (2018); https://doi.org/10.1016/j.ijbiomac.2018.04.186
A. Dufresne, Curr. Opin. Colloid Interface Sci., 29, 1 (2017); https://doi.org/10.1016/j.cocis.2017.01.004
V. Nang An, H.T. Chi Nhan, T.D. Tap, T.T.T. Van, P. Van Viet and L. Van Hieu, J. Polym. Environ., 28, 1465 (2020); https://doi.org/10.1007/s10924-020-01695-x
A.G. Souza, D.F. Santos, R.R. Ferreira, V.Z. Pinto and D.S. Rosa, Int. J. Biol. Macromol., 165, 1803 (2020); https://doi.org/10.1016/j.ijbiomac.2020.10.036
R.M. Santos, W.P. Flauzino Neto, H.A. Silvério, D.F. Martins, N.O. Dantas and D. Pasquini, Ind. Crops Prod., 50, 707 (2013); https://doi.org/10.1016/j.indcrop.2013.08.049
W.P.F. Neto, H.A. Silvério, N.O. Dantas and D. Pasquini, Ind. Crops Prod., 42, 480 (2013); https://doi.org/10.1016/j.indcrop.2012.06.041
F. Rafieian, M. Shahedi, J. Keramat and J. Simonsen, Ind. Crops Prod., 53, 282 (2014); https://doi.org/10.1016/j.indcrop.2013.12.016
C.S. Lee, J. Robinson and M.F. Chong, Process Saf. Environ. Prot., 92, 489 (2014); https://doi.org/10.1016/j.psep.2014.04.010
J. Blockx, A. Verfaillie, O. Deschaume, C. Bartic, K. Muylaert and W. Thielemans, Nanoscale Adv., 3, 4133 (2021); https://doi.org/10.1039/D1NA00102G
S.V. Mayani, S.P. Bhatt, D.S. Padariya and V.J. Mayani, Water Air Soil Pollut., 234, 466 (2023); https://doi.org/10.1007/s11270-023-06482-7
M. Hashemkhani, M.R. Ghalhari, P. Bashardoust, S.S. Hosseini, A. Mesdaghinia and A.H. Mahvi, Sci. Rep., 12, 9655 (2022); https://doi.org/10.1038/s41598-022-13756-3
E.H. Qua, P.R. Hornsby, H.S.S. Sharma and G. Lyons, J. Mater. Sci., 46, 6029 (2011); https://doi.org/10.1007/s10853-011-5565-x
S. Lu, T. Ma, X. Hu, J. Zhao, X. Liao, Y. Song and X. Hu, J. Sci. Food Agric., 102, 312 (2022); https://doi.org/10.1002/jsfa.11360
W. Li, R. Wang and S. Liu, BioRes., 6, 4271 (2011); https://doi.org/10.15376/biores.6.4.4271-4281
A. Bhatnagar and M. Sain, J. Reinf. Plast. Compos., 24, 1259 (2005); https://doi.org/10.1177/0731684405049864
R. Li, J. Fei, Y. Cai, Y. Li, J. Feng and J. Yao, Carbohydr. Polym., 76, 94 (2009); https://doi.org/10.1016/j.carbpol.2008.09.034
B.O. Hong, F. Chen and G. Xue, Cellulose Chem. Technol., 50, 225 (2016).
A.S. Amarasekara, B. Wiredu and Y.M. Lawrence, Carbohydr. Res., 475, 34 (2019); https://doi.org/10.1016/j.carres.2019.02.002
M. Roman and W.T. Winter, Biomacromolecules, 5, 1671 (2004); https://doi.org/10.1021/bm034519+
E.U.P. Barragán, C.F.C. Guerrero, A.M. Zamudio, A.B.M. Cepeda, T. Heinze and A. Koschella, Fibers Polym., 20, 1136 (2019); https://doi.org/10.1007/s12221-019-8973-1
C. Wu, D.J. McClements, M. He, L. Zheng, T. Tian, F. Teng and Y. Li, Carbohydr. Polym., 255, 117364 (2021); https://doi.org/10.1016/j.carbpol.2020.117364
B. Deepa, E. Abraham, N. Cordeiro, M. Mozetic, A.P. Mathew, K. Oksman, M. Faria, S. Thomas and L.A. Pothan, Cellulose, 22, 1075 (2015); https://doi.org/10.1007/s10570-015-0554-x
A. Sonia and K. Priya Dasan, Carbohydr. Polym., 92, 668 (2013); https://doi.org/10.1016/j.carbpol.2012.09.015
Z.Z. Chowdhury and S.B.A. Hamid, BioRes., 11, 3397 (2016); https://doi.org/10.15376/biores.11.2.3397-3415
V.K. Gupta, I. Ali, T.A. Saleh, A. Nayak and S. Agarwal, RSC Adv., 2, 6380 (2012); https://doi.org/10.1039/C2RA20340E
M.S. Onyango, Y. Kojima, O. Aoyi, E.C. Bernardo and H. Matsuda, J. Colloid Interface Sci., 279, 341 (2004); https://doi.org/10.1016/j.jcis.2004.06.038
Y. Zhou, S. Fu, L. Zhang, H. Zhan and M.V. Levit, Carbohydr. Polym., 101, 75 (2014); https://doi.org/10.1016/j.carbpol.2013.08.055
R. Singh, S.P. Raghuvanshi and C. Kaushik, Asian J. Chem., 20, 5818 (2008).
D.J. Killedar and D.S. Bhargava, Indian J. Environ. Health, 35, 81 (1993).