Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Chlorine Dioxide Mediated Oxidation of Sub-Bituminous Coal for Humic Acid Production
Corresponding Author(s) : Ahmad Adnan
Asian Journal of Chemistry,
Vol. 27 No. 11 (2015): Vol 27 Issue 11
Abstract
Humic acids are metastable degradation products of plant origin. These are used as soil conditioner to improve the texture of soil and uptake of nutrients. In nature, these are found in mineral deposits such as lignite or leonardite. However, these can also be prepared by the oxidation of low grade coals using a variety of oxidation processes. Different samples of coal were tested for their oxidizability to humic acids using chlorine dioxide as the oxidant. A sample of coal from Dukki area of Baluchistan gave maximum yield of humic acids. The coal sample was oxidized by chlorine dioxide produced in situ by the reaction between potassium chlorate, sulphuric acid and a reductant such as methanol or hydrochloric acid. Humic acids yield of 76 % was obtained at 65 °C when 100 g coal was treated with chlorine dioxide produced by the reaction between 8 g KClO3, 30 g HCl and 50 mL 50 % H2SO4.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Li, Z. Zhao, W. Huang, A.P. Peng, G. Sheng and J. Fu, Org. Geochem., 35, 1026 (2004); doi:10.1016/j.orggeochem.2004.05.002.
- F.J. Stevenson, Humus Chemistry Genesis, Composition, Reactions, John Wiley & Sons, New York (1982).
- R.M. Atiyeh, S. Lee, C.A. Edwards, N.Q. Arancon and J.D. Metzger, Bioresour. Technol., 84, 7 (2002); doi:10.1016/S0960-8524(02)00017-2.
- G. Brunetti, N. Senesi and C. Plaza, Geoderma, 138, 144 (2007); doi:10.1016/j.geoderma.2006.11.003.
- Y. Chen, M. De Nobili and T. Aviad, in eds.: F. Magdoff and R.R. Weil, Stimulatory Effects of Humic Substances on Plant Growth, In: Soil Organic Matter in Sustainable Agriculture, CRC Press, NY, USA, pp. 103-129 (2004).
- S. Delfine, R. Tognetti, E. Desiderio and A. Alvino, Agron. Sustain. Dev., 25, 183 (2005); doi:10.1051/agro:2005017.
- P. Jiang, Z. Ma and Y. Han, Adv. Mater. Res., 158, 56 (2010); doi:10.4028/www.scientific.net/AMR.158.56.
- H.H. Schobert and C. Song, Fuel, 81, 15 (2002); doi:10.1016/S0016-2361(00)00203-9.
- K. Mae, T. Maki, J. Araki and K. Miura, Energy Fuels, 11, 825 (1997); doi:10.1021/ef960225o.
- A. Kucuk and Y. Kadioglu, Low Temperature Oxidation of Turkish Askale Lignite: Effects of Particle Size and Temperature. SAU, Fen Edebiyat Dergisi, 2008-II, pp. 43-64 (2008).
- D.J. Boron and S.C. Taylor, Fuel, 64, 209 (1985); doi:10.1016/0016-2361(85)90218-2.
- F. Martin and C. Saiz-Jimenez, Fuel, 57, 353 (1978); doi:10.1016/0016-2361(78)90172-2.
- Y. Ni and X. Wang, Can. J. Chem. Eng., 75, 31 (1997); doi:10.1002/cjce.5450750107.
- R.S. Swift, in ed.: D.L. Spark, In Methods of Soil Analysis: Chemical Methods (SSSA Book Series No. 5); SSSA and ASSA: Madison, WI (1996).
- O.R. Nurkowsk, APPG Bull., 68, 285 (1984).
- M. Pervaiz, M. Yousaf, M. Sagir, A. Pervaiz and M. Yasin Naz, Trend Appl. Sci. Res., 9, 132 (2014); doi:10.3923/tasr.2014.132.143.
References
L. Li, Z. Zhao, W. Huang, A.P. Peng, G. Sheng and J. Fu, Org. Geochem., 35, 1026 (2004); doi:10.1016/j.orggeochem.2004.05.002.
F.J. Stevenson, Humus Chemistry Genesis, Composition, Reactions, John Wiley & Sons, New York (1982).
R.M. Atiyeh, S. Lee, C.A. Edwards, N.Q. Arancon and J.D. Metzger, Bioresour. Technol., 84, 7 (2002); doi:10.1016/S0960-8524(02)00017-2.
G. Brunetti, N. Senesi and C. Plaza, Geoderma, 138, 144 (2007); doi:10.1016/j.geoderma.2006.11.003.
Y. Chen, M. De Nobili and T. Aviad, in eds.: F. Magdoff and R.R. Weil, Stimulatory Effects of Humic Substances on Plant Growth, In: Soil Organic Matter in Sustainable Agriculture, CRC Press, NY, USA, pp. 103-129 (2004).
S. Delfine, R. Tognetti, E. Desiderio and A. Alvino, Agron. Sustain. Dev., 25, 183 (2005); doi:10.1051/agro:2005017.
P. Jiang, Z. Ma and Y. Han, Adv. Mater. Res., 158, 56 (2010); doi:10.4028/www.scientific.net/AMR.158.56.
H.H. Schobert and C. Song, Fuel, 81, 15 (2002); doi:10.1016/S0016-2361(00)00203-9.
K. Mae, T. Maki, J. Araki and K. Miura, Energy Fuels, 11, 825 (1997); doi:10.1021/ef960225o.
A. Kucuk and Y. Kadioglu, Low Temperature Oxidation of Turkish Askale Lignite: Effects of Particle Size and Temperature. SAU, Fen Edebiyat Dergisi, 2008-II, pp. 43-64 (2008).
D.J. Boron and S.C. Taylor, Fuel, 64, 209 (1985); doi:10.1016/0016-2361(85)90218-2.
F. Martin and C. Saiz-Jimenez, Fuel, 57, 353 (1978); doi:10.1016/0016-2361(78)90172-2.
Y. Ni and X. Wang, Can. J. Chem. Eng., 75, 31 (1997); doi:10.1002/cjce.5450750107.
R.S. Swift, in ed.: D.L. Spark, In Methods of Soil Analysis: Chemical Methods (SSSA Book Series No. 5); SSSA and ASSA: Madison, WI (1996).
O.R. Nurkowsk, APPG Bull., 68, 285 (1984).
M. Pervaiz, M. Yousaf, M. Sagir, A. Pervaiz and M. Yasin Naz, Trend Appl. Sci. Res., 9, 132 (2014); doi:10.3923/tasr.2014.132.143.