Copyright (c) 2024 N. Srivastava, K. Raees
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of Zinc-based Bimetallic Nanoparticles for the Degradation of Industrial Dyes
Corresponding Author(s) : K. Raees
Asian Journal of Chemistry,
Vol. 36 No. 8 (2024): Vol 36 Issue 8, 2024
Abstract
Textile dyes are a prominent source of coloured organic substances that present an increasingly concerning risk to biodiversity. This problem could be remediated by incorporating nanoparticles as photocatalysts in photodegradation activities. The photocatalytic degradation of brilliant blue and Amaranth dyes has been investigated using ZnO-Fe2O3 bimetallic nanoparticles (Zn-Fe BN) in an aqueous media under sun rays. The Zn-Fe BN was synthesized using a chemical synthesis technique utilizing FeCl3 and ZnSO4·7H2O as starting materials and further characterized using XRD, FTIR, SEM, EDAX and DLS techniques. The degradation rate was examined by recording the absorbance value via a UV-Vis spectrophotometer. The experimental results demonstrated that the synthesized Zn-Fe BN was an effective catalyst in removing the dyes from water. The decomposition rate was effective with variations in the reaction parameters. As the concentration of the NaOH solution was increased, an increment in the rate of degradation was observed simultaneously, as well as for different amounts of catalyst. Hence, the removal of textile dyes could be made easier by adopting the methodology.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V. Jacometti, Laws, 8, 27 (2019); https://doi.org/10.3390/laws8040027
- T. Hussain and A. Wahab, J. Cleaner Prod., 198, 806 (2018); https://doi.org/10.1016/j.jclepro.2018.07.051
- K. Sathya, K. Nagarajan, G.C.G. Malar, S. Rajalakshmi and P.R. Lakshmi, Appl. Water Sci., 12, 70 (2022); https://doi.org/10.1007/s13201-022-01594-7
- S. Varjani, P. Rakholiya, H.Y. Ng, S. You and J.A. Teixeira, Bioresour. Technol., 314, 123728 (2020); https://doi.org/10.1016/j.biortech.2020.123728
- S. Sarkar, A. Banerjee, U. Halder, R. Biswas and R. Bandopadhyay, Water Conserv. Sci. Eng., 2, 121 (2017); https://doi.org/10.1007/s41101-017-0031-5
- J.J. Soriano, J. Mathieu-Denoncourt, G. Norman, S.R. de Solla and V.S. Langlois, Environ. Sci. Pollut. Res. Int., 21, 3582 (2014); https://doi.org/10.1007/s11356-013-2323-4
- B. Lellis, C.Z. Fávaro-Polonio, J.A. Pamphile and J.C. Polonio, Biotechnol. Res. Innov., 3, 275 (2019); https://doi.org/10.1016/j.biori.2019.09.001
- S. Benkhaya, S.M. M’rabet and A. El Harfi, Heliyon, 6, e03271 (2020); https://doi.org/10.1016/j.heliyon.2020.e03271
- R. Sasikala, K. Karthikeyan, D. Easwaramoorthy, I.M. Bilal and S.K. Rani, Environ. Nanotechnol. Monit. Manag., 6, 45 (2016); https://doi.org/10.1016/j.enmm.2016.07.001
- P. Singh, M.C. Vishnu, K.K. Sharma, R. Singh, S. Madhav, D. Tiwary and P.K. Mishra, Desalination Water Treat., 57, 20552 (2016); https://doi.org/10.1080/19443994.2015.1108871
- G. Mamba, X.Y. Mbianda and A.K. Mishra, J. Environ. Sci. (China), 33, 219 (2015); https://doi.org/10.1016/j.jes.2014.06.052
- S. Agrahari, A.K. Singh, R.K. Gautam and I. Tiwari, Environ. Sci. Pollut. Res. Int., 30, 124866 (2022); https://doi.org/10.1007/s11356-022-23660-y
- Z. Shen, G. Peng, J. Shi and G. Ya, Environ. Sci. Pollut. Res. Int., 28, 51786 (2021); https://doi.org/10.1007/s11356-021-14372-w
- Z. Shen, G. Peng, Y. Gao and J. Shi, Environ. Sci. Water Res. Technol., 7, 1078 (2021); https://doi.org/10.1039/D1EW00028D
- B. Pal and M. Sharon, Mater. Chem. Phys., 76, 82 (2002); https://doi.org/10.1016/S0254-0584(01)00514-4
- S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy and V. Murugesan, Sol. Energy Mater. Sol. Cells, 77, 65 (2003); https://doi.org/10.1016/S0927-0248(02)00255-6
- A. Di Mauro, M.E. Fragala, V. Privitera and G. Impellizzeri, Mater. Sci. Semicond. Process., 69, 44 (2017); https://doi.org/10.1016/j.mssp.2017.03.029
- L. Xiang and X. Zhao, Nanomater., 7, 310 (2017); https://doi.org/10.3390/nano7100310
- C.B. Ong, L.Y. Ng and A.W. Mohammad, Renew. Sustain. Energy Rev., 81, 536 (2018); https://doi.org/10.1016/j.rser.2017.08.020
- R. Peña-Garcia, Y. Guerra, R. Milani, D.M. Oliveira, A.R. Rodrigues and E. Padrón-Hernández, J. Magn. Magn. Mater., 498, 166085 (2020); https://doi.org/10.1016/j.jmmm.2019.166085
- K. Raees, M.S. Ansari and M.Z.A. Rafiquee, J. Nanostructure Chem., 9, 175 (2019); https://doi.org/10.1007/s40097-019-0308-7
- J. Saha and J. Podder, J. Bangladesh Acad. Sci., 35, 203 (1970); https://doi.org/10.3329/jbas.v35i2.9426
- U.G. Akpan and B.H. Hameed, J. Hazard. Mater., 170, 520 (2009); https://doi.org/10.1016/j.jhazmat.2009.05.039
- R. Saravanan, H. Shankar, T. Prakash, V. Narayanan and A. Stephen, Mater. Chem. Phys., 125, 277 (2011); https://doi.org/10.1016/j.matchemphys.2010.09.030
- L.M. Mahlaule-Glory, S. Mathobela and N.C. Hintsho-Mbita, Catalysts, 12, 334 (2022); https://doi.org/10.3390/catal12030334
- D.S. Idris, A. Roy, A. Subramanian, S. Alghamdi, K. Chidamabaram and N. Qusty, J. Inorg. Organomet. Polym., 34, 1908 (2024); https://doi.org/10.1007/s10904-023-02936-x
- B. Maleki, A.G. Abdulhasan, T.H. Khlaif and M. Mansouri, Int. J. Environ. Anal. Chem., 487, 1 (2024); https://doi.org/10.1080/03067319.2024.2337222
- H.M. Abo-Dief, S.M. El-Bahy, O.K. Hussein, Z.M. El-Bahy, M. Shahid and I. Shakir, J. Alloys Compd., 913, 165164 (2022); https://doi.org/10.1016/j.jallcom.2022.165164
- M. Sorbiun, E. Shayegan Mehr, A. Ramazani and S. Taghavi Fardood, J. Mater. Sci. Mater. Electron., 29, 2806 (2018); https://doi.org/10.1007/s10854-017-8209-3
- M.S. Hasanin, A.H. Hashem, A.A. Al-Askar, J. Haponiuk and E. Saied, Electron. J. Biotechnol., 65, 45 (2023); https://doi.org/10.1016/j.ejbt.2023.05.001
- B. Bhushan, K. Jahan, V. Verma, B.S. Murty and K. Mondal, Mater. Chem. Phys., 253, 123394 (2020); https://doi.org/10.1016/j.matchemphys.2020.123394
- M.F. Abdel Messih, M.A. Ahmed, A. Soltan and S.S. Anis, J. Phys. Chem. Solids, 135, 109086 (2019); https://doi.org/10.1016/j.jpcs.2019.109086
- M. Saeed, M. Siddique, M. Ibrahim, N. Akram, M. Usman, M.A. Aleem and A. Baig, Environ. Prog. Sustain. Energy, 39, 13408 (2020); https://doi.org/10.1002/ep.13408
- M. Afzal, M. Javed, S. Aroob, T. Javed, M. M. Alnoman, W. Alelwani, I. Bibi, M. Sharif, M. Saleem, M. Rizwan, A. Raheel, I. Maseeh, S. Carabineiro and M. Taj, Nanomater., 13, 2079 (2023); https://doi.org/10.3390/nano13142079
- N.A.F. Al-Rawashdeh, O. Allabadi and M.T. Aljarrah, ACS Omega, 5, 28046 (2020); https://doi.org/10.1021/acsomega.0c03608
- V. Beena, S.L. Rayar, S. Ajitha, A. Ahmad, M.D. Albaqami, F.A.A. Alsabar and M. Sillanpää, Water, 13, 2189 (2021); https://doi.org/10.3390/w13162189
- V. Beena, S.L. Rayar, S. Ajitha, A. Ahmad, F.J. Iftikhar, K.M. Abualnaja, T.S. Alomar, M. Ouladsmne and S. Ali, Water, 13, 2561 (2021); https://doi.org/10.3390/w13182561
- N. Kitchamsetti, D. Narsimulu, A. Chinthakuntla, C. Shilpa Chakra and A.L.F. de Barros, Inorg. Chem. Commun., 144, 109946 (2022); https://doi.org/10.1016/j.inoche.2022.109946
References
V. Jacometti, Laws, 8, 27 (2019); https://doi.org/10.3390/laws8040027
T. Hussain and A. Wahab, J. Cleaner Prod., 198, 806 (2018); https://doi.org/10.1016/j.jclepro.2018.07.051
K. Sathya, K. Nagarajan, G.C.G. Malar, S. Rajalakshmi and P.R. Lakshmi, Appl. Water Sci., 12, 70 (2022); https://doi.org/10.1007/s13201-022-01594-7
S. Varjani, P. Rakholiya, H.Y. Ng, S. You and J.A. Teixeira, Bioresour. Technol., 314, 123728 (2020); https://doi.org/10.1016/j.biortech.2020.123728
S. Sarkar, A. Banerjee, U. Halder, R. Biswas and R. Bandopadhyay, Water Conserv. Sci. Eng., 2, 121 (2017); https://doi.org/10.1007/s41101-017-0031-5
J.J. Soriano, J. Mathieu-Denoncourt, G. Norman, S.R. de Solla and V.S. Langlois, Environ. Sci. Pollut. Res. Int., 21, 3582 (2014); https://doi.org/10.1007/s11356-013-2323-4
B. Lellis, C.Z. Fávaro-Polonio, J.A. Pamphile and J.C. Polonio, Biotechnol. Res. Innov., 3, 275 (2019); https://doi.org/10.1016/j.biori.2019.09.001
S. Benkhaya, S.M. M’rabet and A. El Harfi, Heliyon, 6, e03271 (2020); https://doi.org/10.1016/j.heliyon.2020.e03271
R. Sasikala, K. Karthikeyan, D. Easwaramoorthy, I.M. Bilal and S.K. Rani, Environ. Nanotechnol. Monit. Manag., 6, 45 (2016); https://doi.org/10.1016/j.enmm.2016.07.001
P. Singh, M.C. Vishnu, K.K. Sharma, R. Singh, S. Madhav, D. Tiwary and P.K. Mishra, Desalination Water Treat., 57, 20552 (2016); https://doi.org/10.1080/19443994.2015.1108871
G. Mamba, X.Y. Mbianda and A.K. Mishra, J. Environ. Sci. (China), 33, 219 (2015); https://doi.org/10.1016/j.jes.2014.06.052
S. Agrahari, A.K. Singh, R.K. Gautam and I. Tiwari, Environ. Sci. Pollut. Res. Int., 30, 124866 (2022); https://doi.org/10.1007/s11356-022-23660-y
Z. Shen, G. Peng, J. Shi and G. Ya, Environ. Sci. Pollut. Res. Int., 28, 51786 (2021); https://doi.org/10.1007/s11356-021-14372-w
Z. Shen, G. Peng, Y. Gao and J. Shi, Environ. Sci. Water Res. Technol., 7, 1078 (2021); https://doi.org/10.1039/D1EW00028D
B. Pal and M. Sharon, Mater. Chem. Phys., 76, 82 (2002); https://doi.org/10.1016/S0254-0584(01)00514-4
S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy and V. Murugesan, Sol. Energy Mater. Sol. Cells, 77, 65 (2003); https://doi.org/10.1016/S0927-0248(02)00255-6
A. Di Mauro, M.E. Fragala, V. Privitera and G. Impellizzeri, Mater. Sci. Semicond. Process., 69, 44 (2017); https://doi.org/10.1016/j.mssp.2017.03.029
L. Xiang and X. Zhao, Nanomater., 7, 310 (2017); https://doi.org/10.3390/nano7100310
C.B. Ong, L.Y. Ng and A.W. Mohammad, Renew. Sustain. Energy Rev., 81, 536 (2018); https://doi.org/10.1016/j.rser.2017.08.020
R. Peña-Garcia, Y. Guerra, R. Milani, D.M. Oliveira, A.R. Rodrigues and E. Padrón-Hernández, J. Magn. Magn. Mater., 498, 166085 (2020); https://doi.org/10.1016/j.jmmm.2019.166085
K. Raees, M.S. Ansari and M.Z.A. Rafiquee, J. Nanostructure Chem., 9, 175 (2019); https://doi.org/10.1007/s40097-019-0308-7
J. Saha and J. Podder, J. Bangladesh Acad. Sci., 35, 203 (1970); https://doi.org/10.3329/jbas.v35i2.9426
U.G. Akpan and B.H. Hameed, J. Hazard. Mater., 170, 520 (2009); https://doi.org/10.1016/j.jhazmat.2009.05.039
R. Saravanan, H. Shankar, T. Prakash, V. Narayanan and A. Stephen, Mater. Chem. Phys., 125, 277 (2011); https://doi.org/10.1016/j.matchemphys.2010.09.030
L.M. Mahlaule-Glory, S. Mathobela and N.C. Hintsho-Mbita, Catalysts, 12, 334 (2022); https://doi.org/10.3390/catal12030334
D.S. Idris, A. Roy, A. Subramanian, S. Alghamdi, K. Chidamabaram and N. Qusty, J. Inorg. Organomet. Polym., 34, 1908 (2024); https://doi.org/10.1007/s10904-023-02936-x
B. Maleki, A.G. Abdulhasan, T.H. Khlaif and M. Mansouri, Int. J. Environ. Anal. Chem., 487, 1 (2024); https://doi.org/10.1080/03067319.2024.2337222
H.M. Abo-Dief, S.M. El-Bahy, O.K. Hussein, Z.M. El-Bahy, M. Shahid and I. Shakir, J. Alloys Compd., 913, 165164 (2022); https://doi.org/10.1016/j.jallcom.2022.165164
M. Sorbiun, E. Shayegan Mehr, A. Ramazani and S. Taghavi Fardood, J. Mater. Sci. Mater. Electron., 29, 2806 (2018); https://doi.org/10.1007/s10854-017-8209-3
M.S. Hasanin, A.H. Hashem, A.A. Al-Askar, J. Haponiuk and E. Saied, Electron. J. Biotechnol., 65, 45 (2023); https://doi.org/10.1016/j.ejbt.2023.05.001
B. Bhushan, K. Jahan, V. Verma, B.S. Murty and K. Mondal, Mater. Chem. Phys., 253, 123394 (2020); https://doi.org/10.1016/j.matchemphys.2020.123394
M.F. Abdel Messih, M.A. Ahmed, A. Soltan and S.S. Anis, J. Phys. Chem. Solids, 135, 109086 (2019); https://doi.org/10.1016/j.jpcs.2019.109086
M. Saeed, M. Siddique, M. Ibrahim, N. Akram, M. Usman, M.A. Aleem and A. Baig, Environ. Prog. Sustain. Energy, 39, 13408 (2020); https://doi.org/10.1002/ep.13408
M. Afzal, M. Javed, S. Aroob, T. Javed, M. M. Alnoman, W. Alelwani, I. Bibi, M. Sharif, M. Saleem, M. Rizwan, A. Raheel, I. Maseeh, S. Carabineiro and M. Taj, Nanomater., 13, 2079 (2023); https://doi.org/10.3390/nano13142079
N.A.F. Al-Rawashdeh, O. Allabadi and M.T. Aljarrah, ACS Omega, 5, 28046 (2020); https://doi.org/10.1021/acsomega.0c03608
V. Beena, S.L. Rayar, S. Ajitha, A. Ahmad, M.D. Albaqami, F.A.A. Alsabar and M. Sillanpää, Water, 13, 2189 (2021); https://doi.org/10.3390/w13162189
V. Beena, S.L. Rayar, S. Ajitha, A. Ahmad, F.J. Iftikhar, K.M. Abualnaja, T.S. Alomar, M. Ouladsmne and S. Ali, Water, 13, 2561 (2021); https://doi.org/10.3390/w13182561
N. Kitchamsetti, D. Narsimulu, A. Chinthakuntla, C. Shilpa Chakra and A.L.F. de Barros, Inorg. Chem. Commun., 144, 109946 (2022); https://doi.org/10.1016/j.inoche.2022.109946