Copyright (c) 2024 Reshma Sachin Pawar Reshma Sachin Pawar
This work is licensed under a Creative Commons Attribution 4.0 International License.
Adsorption of ortho-Nitrophenol from Aqueous Solution using Phosphated Biomass of Ailanthus excelsa: Kinetic and Equilibrium Studies
Corresponding Author(s) : Anandrao A. Kale
Asian Journal of Chemistry,
Vol. 36 No. 11 (2024): Vol 36 Issue 11, 2024
Abstract
This study interprets phosphated biomass of Ailanthus excelsa (PBAE) as a eco-friendly, inexpensive and potential adsorbent for adsorption of ortho-nitrophenol (ONP) from aqueous solution by using batch adsorption method. The prepared biosorbent was characterized using a variety of techniques such as Brunauer Emmett Teller (BET), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM). As a function of many process parameters including material dose, contact time, concentration, pH and temperature, batch studies were conducted. It was found that a pH of 6.0, a biosorbent dosage of 0.050 g and an initial phenol concentration of 25 mg/L and temperature 298 K were the best conditions for ONP removal. The maximum sorption was found to be 95.28%. Adsorption data was better fitted to the Langmuir, Freundlich, Temkin and Dubinin Radushkevich isotherms. It was demonstrated that the sorption rate follows the pseudo-second order kinetics and intraparticle diffusion theory and the biosorption process was spontaneous and exothermic in nature.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.A. Oyekanmi, A.A.A. Latiff, Z. Daud, R.M.S.R. Mohamed, N.A.A. Aziz, N. Ismail, M. Rafatullah, A. Ahmad and K. Hossain, Desalination Water Treat., 169, 181 (2019); https://doi.org/10.5004/dwt.2019.24689
- M. Aazza, C. Mounir, H. Ahlafi, A. Bouymajane and F. Cacciola, J. Mol. Liq., 383, 122139 (2023); https://doi.org/10.1016/j.molliq.2023.122139
- M. Ahmaruzzaman, S.R. Mishra, V. Gadore, G. Yadav, B. Bhattacharjee, S. Roy, A. Bhuyan, B. Hazarika, J. Darabdhara and K. Kumari, J. Environ. Chem. Eng., 12, 112964 (2024); https://doi.org/10.1016/j.jece.2024.112964
- M.C. Tomei, M.C. Annesini, S. Rita and A.J. Daugulis, Environ. Sci. Technol., 44, 7254 (2010); https://doi.org/10.1021/es903806p
- S. Yi, W.Q. Zhuang, B. Wu, S.T.L. Tay and J.H. Tay, Environ. Sci. Technol., 40, 2396 (2006); https://doi.org/10.1021/es0517771
- WHO/UNICEF Joint Water Supply, Sanitation Monitoring Programme Progress on Drinking Water and Sanitation, Update (2014).
- T. Deblonde, C. Cossu-Leguille and P. Hartemann, Int. J. Hyg. Environ. Health, 214, 442 (2011); https://doi.org/10.1016/j.ijheh.2011.08.002
- D.P. Zagklis, A.I. Vavouraki, M.E. Kornaros and C.A. Paraskeva, J. Hazard. Mater., 285, 69 (2015); https://doi.org/10.1016/j.jhazmat.2014.11.038
- H.J. Choi, Biotechnol. Biotechnol. Equip., 29, 666 (2015); https://doi.org/10.1080/13102818.2015.1031177
- A. Turki, C. Guillard, F. Dappozze, Z. Ksibi, G. Berhault and H. Kochkar, Appl. Catal. B, 163, 404 (2015); https://doi.org/10.1016/j.apcatb.2014.08.010
- A. Bhatnagar, W. Hogland, M. Marques and M. Sillanpää, Chem. Eng. J., 219, 499 (2013); https://doi.org/10.1016/j.cej.2012.12.038
- P.S. Thue, M.A. Adebayo, E.C. Lima, J.M. Sieliechi, F.M. Machado, G.L. Dotto, J.C.P. Vaghetti and S.L.P. Dias, J. Mol. Liq., 223, 1067 (2016); https://doi.org/10.1016/j.molliq.2016.09.032
- W.J. Weber Jr. and J.C. Morris, J. Sanit. Engrg. Div., 89, 31 (1963); https://doi.org/10.1061/JSEDAI.0000430
- M.A. Abdelaziz, M.M. Abdelaziz, H.M. Althurwi, I.A. Algrfan, K.M. Alasiri and S.K. Mustafa, Asian J. Chem. Sci., 14, 65 (2024); https://doi.org/10.9734/ajocs/2024/v14i1287
- A.F. Alkaim, A.M. Aljeboreea, O.H. Salahb, A.A. Aljanabic and U.S. Altimarid, Asian J. Green Chem., 8, 188 (2024); https://doi.org/10.48309/ajgc.2024.427437.1467
- R. Al-Tohamy, S.S. Ali, F. Li, K.M. Okasha, Y.A.-G. Mahmoud, H. Jiao, T. Elsamahy, Y. Fu and J. Sun, Ecotoxicol. Environ. Safety, 231, 113160 (2022); https://doi.org/10.1016/j.ecoenv.2021.113160
- C. Femina-Carolin, T. Kamalesh, P. Senthil Kumar, G. Rangasamy, Ind. Chem. Chem. Res., 62, 8575 (2023); https://pubs.acs.org/doi/10.1021/acs.iecr.3c00709
- R.S. Juang, F.C. Wu and R.L. Tseng, Colloids Surf. A Physicochem. Eng. Asp., 201, 191 (2002); https://doi.org/10.1016/S0927-7757(01)01004-4
- R.R. Karri, N.S. Jayakumar and J.N. Sahu, J. Mol. Liq., 231, 249 (2017); https://doi.org/10.1016/j.molliq.2017.02.003
- I.A.W. Tan, A.L. Ahmad and B.H. Hameed, J. Hazard. Mater., 154, 337 (2008); https://doi.org/10.1016/j.jhazmat.2007.10.031
- R.L. Tseng and S.K. Tseng, J. Colloid Interface Sci., 287, 428 (2005); https://doi.org/10.1016/j.jcis.2005.02.033
- K.P. Singh, A. Malik, S. Sinha and P. Ojha, J. Hazard. Mater., 150, 626 (2008); https://doi.org/10.1016/j.jhazmat.2007.05.017
- B. Karagozoglu, M. Tasdemir, E. Demirbas and M. Kobya, J. Hazard. Mater., 147, 297 (2007); https://doi.org/10.1016/j.jhazmat.2007.01.003
- B.H. Hameed, A.T.M. Din and A.L. Ahmad, J. Hazard. Mater., 141, 819 (2007); https://doi.org/10.1016/j.jhazmat.2006.07.049
- I.A.W. Tan, B.H. Hameed and A.L. Ahmad, Chem. Eng. J., 127, 111 (2007); https://doi.org/10.1016/j.cej.2006.09.010
- N. Thinakaran, P. Baskaralingam, M. Pulikesi, P. Panneerselvam and S. Sivanesan, J. Hazard. Mater., 151, 316 (2008); https://doi.org/10.1016/j.jhazmat.2007.05.076
- A.J.K. Kupeta, E.B. Naidoo and A.E. Ofomaja, J. Clean. Prod., 179, 191 (2018); https://doi.org/10.1016/j.jclepro.2018.01.034
- E.R. Abaide, G.L. Dotto, M.V. Tres, G.L. Zabot and M.A. Mazutti, Bioresour. Technol., 284, 25 (2019); https://doi.org/10.1016/j.biortech.2019.03.110
- T. Sismanoglu and S. Pura, Colloids Surf. A Physicochem. Eng. Asp., 180, 1 (2001); https://doi.org/10.1016/S0927-7757(00)00751-2
- A. Kale and R. Pawar, J. Emerg. Technol. Innov. Res., 8, c446 (2021).
- V.C. Srivastava, M.M. Swamy, I.D. Mall, B. Prasad and I.M. Mishra, Colloids Surf. A Physicochem. Eng. Asp., 272, 89 (2006); https://doi.org/10.1016/j.colsurfa.2005.07.016
- I. Langmuir, J. Am. Chem. Soc., 38, 2221 (1916); https://doi.org/10.1021/ja02268a002
- V. Srihari and A. Das, Desalination, 225, 220 (2008); https://doi.org/10.1016/j.desal.2007.07.008
- H.M.F. Freundlich, Z. Phys.Chem., 57, 385(1906).
- Y.S. Ho and G. McKay, Chem. Eng. J., 70, 115 (1998); https://doi.org/10.1016/S0923-0467(98)00076-1
- S. Veli and B. Alyüz, J. Hazard. Mater., 149, 226 (2007); https://doi.org/10.1016/j.jhazmat.2007.04.109
- Y. Huang, X. Ma, G. Liang and H. Yan, Chem. Eng. J., 141, 1 (2008); https://doi.org/10.1016/j.cej.2007.10.009
- S. Chowdhury and P.D. Saha, Colloids Surf. B Biointerfaces, 88, 697 (2011); https://doi.org/10.1016/j.colsurfb.2011.08.003
- Y.S. Ho and G. McKay, Water Res., 34, 735 (2000); https://doi.org/10.1016/S0043-1354(99)00232-8
References
A.A. Oyekanmi, A.A.A. Latiff, Z. Daud, R.M.S.R. Mohamed, N.A.A. Aziz, N. Ismail, M. Rafatullah, A. Ahmad and K. Hossain, Desalination Water Treat., 169, 181 (2019); https://doi.org/10.5004/dwt.2019.24689
M. Aazza, C. Mounir, H. Ahlafi, A. Bouymajane and F. Cacciola, J. Mol. Liq., 383, 122139 (2023); https://doi.org/10.1016/j.molliq.2023.122139
M. Ahmaruzzaman, S.R. Mishra, V. Gadore, G. Yadav, B. Bhattacharjee, S. Roy, A. Bhuyan, B. Hazarika, J. Darabdhara and K. Kumari, J. Environ. Chem. Eng., 12, 112964 (2024); https://doi.org/10.1016/j.jece.2024.112964
M.C. Tomei, M.C. Annesini, S. Rita and A.J. Daugulis, Environ. Sci. Technol., 44, 7254 (2010); https://doi.org/10.1021/es903806p
S. Yi, W.Q. Zhuang, B. Wu, S.T.L. Tay and J.H. Tay, Environ. Sci. Technol., 40, 2396 (2006); https://doi.org/10.1021/es0517771
WHO/UNICEF Joint Water Supply, Sanitation Monitoring Programme Progress on Drinking Water and Sanitation, Update (2014).
T. Deblonde, C. Cossu-Leguille and P. Hartemann, Int. J. Hyg. Environ. Health, 214, 442 (2011); https://doi.org/10.1016/j.ijheh.2011.08.002
D.P. Zagklis, A.I. Vavouraki, M.E. Kornaros and C.A. Paraskeva, J. Hazard. Mater., 285, 69 (2015); https://doi.org/10.1016/j.jhazmat.2014.11.038
H.J. Choi, Biotechnol. Biotechnol. Equip., 29, 666 (2015); https://doi.org/10.1080/13102818.2015.1031177
A. Turki, C. Guillard, F. Dappozze, Z. Ksibi, G. Berhault and H. Kochkar, Appl. Catal. B, 163, 404 (2015); https://doi.org/10.1016/j.apcatb.2014.08.010
A. Bhatnagar, W. Hogland, M. Marques and M. Sillanpää, Chem. Eng. J., 219, 499 (2013); https://doi.org/10.1016/j.cej.2012.12.038
P.S. Thue, M.A. Adebayo, E.C. Lima, J.M. Sieliechi, F.M. Machado, G.L. Dotto, J.C.P. Vaghetti and S.L.P. Dias, J. Mol. Liq., 223, 1067 (2016); https://doi.org/10.1016/j.molliq.2016.09.032
W.J. Weber Jr. and J.C. Morris, J. Sanit. Engrg. Div., 89, 31 (1963); https://doi.org/10.1061/JSEDAI.0000430
M.A. Abdelaziz, M.M. Abdelaziz, H.M. Althurwi, I.A. Algrfan, K.M. Alasiri and S.K. Mustafa, Asian J. Chem. Sci., 14, 65 (2024); https://doi.org/10.9734/ajocs/2024/v14i1287
A.F. Alkaim, A.M. Aljeboreea, O.H. Salahb, A.A. Aljanabic and U.S. Altimarid, Asian J. Green Chem., 8, 188 (2024); https://doi.org/10.48309/ajgc.2024.427437.1467
R. Al-Tohamy, S.S. Ali, F. Li, K.M. Okasha, Y.A.-G. Mahmoud, H. Jiao, T. Elsamahy, Y. Fu and J. Sun, Ecotoxicol. Environ. Safety, 231, 113160 (2022); https://doi.org/10.1016/j.ecoenv.2021.113160
C. Femina-Carolin, T. Kamalesh, P. Senthil Kumar, G. Rangasamy, Ind. Chem. Chem. Res., 62, 8575 (2023); https://pubs.acs.org/doi/10.1021/acs.iecr.3c00709
R.S. Juang, F.C. Wu and R.L. Tseng, Colloids Surf. A Physicochem. Eng. Asp., 201, 191 (2002); https://doi.org/10.1016/S0927-7757(01)01004-4
R.R. Karri, N.S. Jayakumar and J.N. Sahu, J. Mol. Liq., 231, 249 (2017); https://doi.org/10.1016/j.molliq.2017.02.003
I.A.W. Tan, A.L. Ahmad and B.H. Hameed, J. Hazard. Mater., 154, 337 (2008); https://doi.org/10.1016/j.jhazmat.2007.10.031
R.L. Tseng and S.K. Tseng, J. Colloid Interface Sci., 287, 428 (2005); https://doi.org/10.1016/j.jcis.2005.02.033
K.P. Singh, A. Malik, S. Sinha and P. Ojha, J. Hazard. Mater., 150, 626 (2008); https://doi.org/10.1016/j.jhazmat.2007.05.017
B. Karagozoglu, M. Tasdemir, E. Demirbas and M. Kobya, J. Hazard. Mater., 147, 297 (2007); https://doi.org/10.1016/j.jhazmat.2007.01.003
B.H. Hameed, A.T.M. Din and A.L. Ahmad, J. Hazard. Mater., 141, 819 (2007); https://doi.org/10.1016/j.jhazmat.2006.07.049
I.A.W. Tan, B.H. Hameed and A.L. Ahmad, Chem. Eng. J., 127, 111 (2007); https://doi.org/10.1016/j.cej.2006.09.010
N. Thinakaran, P. Baskaralingam, M. Pulikesi, P. Panneerselvam and S. Sivanesan, J. Hazard. Mater., 151, 316 (2008); https://doi.org/10.1016/j.jhazmat.2007.05.076
A.J.K. Kupeta, E.B. Naidoo and A.E. Ofomaja, J. Clean. Prod., 179, 191 (2018); https://doi.org/10.1016/j.jclepro.2018.01.034
E.R. Abaide, G.L. Dotto, M.V. Tres, G.L. Zabot and M.A. Mazutti, Bioresour. Technol., 284, 25 (2019); https://doi.org/10.1016/j.biortech.2019.03.110
T. Sismanoglu and S. Pura, Colloids Surf. A Physicochem. Eng. Asp., 180, 1 (2001); https://doi.org/10.1016/S0927-7757(00)00751-2
A. Kale and R. Pawar, J. Emerg. Technol. Innov. Res., 8, c446 (2021).
V.C. Srivastava, M.M. Swamy, I.D. Mall, B. Prasad and I.M. Mishra, Colloids Surf. A Physicochem. Eng. Asp., 272, 89 (2006); https://doi.org/10.1016/j.colsurfa.2005.07.016
I. Langmuir, J. Am. Chem. Soc., 38, 2221 (1916); https://doi.org/10.1021/ja02268a002
V. Srihari and A. Das, Desalination, 225, 220 (2008); https://doi.org/10.1016/j.desal.2007.07.008
H.M.F. Freundlich, Z. Phys.Chem., 57, 385(1906).
Y.S. Ho and G. McKay, Chem. Eng. J., 70, 115 (1998); https://doi.org/10.1016/S0923-0467(98)00076-1
S. Veli and B. Alyüz, J. Hazard. Mater., 149, 226 (2007); https://doi.org/10.1016/j.jhazmat.2007.04.109
Y. Huang, X. Ma, G. Liang and H. Yan, Chem. Eng. J., 141, 1 (2008); https://doi.org/10.1016/j.cej.2007.10.009
S. Chowdhury and P.D. Saha, Colloids Surf. B Biointerfaces, 88, 697 (2011); https://doi.org/10.1016/j.colsurfb.2011.08.003
Y.S. Ho and G. McKay, Water Res., 34, 735 (2000); https://doi.org/10.1016/S0043-1354(99)00232-8