Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Stability of Foaming Agent for Foam Decontamination
Corresponding Author(s) : Chong-Hun Jung
Asian Journal of Chemistry,
Vol. 27 No. 11 (2015): Vol 27 Issue 11
Abstract
This study conducted experiments to evaluate the stability of nano foaming agents by adding various types of surfactants, silica nanoparticles and viscosifiers with the aim of enhancing the stability of foaming agents containing nanoparticles. Nonionic surfactants such as EM100 showed higher stability as compared to the sodium dodecyl sulfate anionic surfactant. The cosurfactant addition did not significantly affect the foam stability. When silica nanoparticles were added to the surfactant EM100, the foam stability improved further. In particular, the foam stability of the nano foaming agent was observed to be the maximum when a partially hydrophobic nanoporous silica nanoparticles such as KAERI 1 was added, as compared to the addition of a hydrophilic dry silica such as M5. This is because the partially hydrophobic particles were distributed over the liquid film between the foams, thereby preventing drainage and increasing the stability of the foaming agent fluid.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Anibal, A. Taboas, A. Moghissi and S. Thomas, “The Decommissioning Handbook”, ASME, 4-22 (2004).
- IAEA, State of the Art Technology for Decontamination and Dismantling of Nuclear Facilities, IAEA in Austria (1999).
- I. Penfold, I. Tucker, R.K. Thomas and J. Zhang, Langmuir, 21, 10061 (2005); doi:10.1021/la0505014.
- B. Fournel, S. Angot and P. Joyer, Decontamination of Phebus Experimental Target Chember using Sprayed Foam, ICONE 10, Arlington, USA (2002).
- J.P. Turchet, B. Fournel and G. Estienne, Pipe Decontamination Involving String-Foam Circulation, ICONE 10, Arlington, USA (2002).
- R.L. Demmer, D.R. Peterman, J.L. Tripp, D.C. Cooper and K.E. Wright, Long Lasting Decontamination Foam, US Patent 7,846,888 (2010).
- B.M. Choudary, M.L. Kantam, K.V.S. Ranganath and K.K. Rao, Angew. Chem. Int. Ed., 44, 322 (2005); doi:10.1002/anie.200461070.
- N.F. Djabbarah and D.T. Wasan, Chem. Eng. Sci., 37, 175 (1982); doi:10.1016/0009-2509(82)80152-8.
- B.P. Binks and R. Murakami, Nat. Mater., 5, 865 (2006); doi:10.1038/nmat1757.
References
L. Anibal, A. Taboas, A. Moghissi and S. Thomas, “The Decommissioning Handbook”, ASME, 4-22 (2004).
IAEA, State of the Art Technology for Decontamination and Dismantling of Nuclear Facilities, IAEA in Austria (1999).
I. Penfold, I. Tucker, R.K. Thomas and J. Zhang, Langmuir, 21, 10061 (2005); doi:10.1021/la0505014.
B. Fournel, S. Angot and P. Joyer, Decontamination of Phebus Experimental Target Chember using Sprayed Foam, ICONE 10, Arlington, USA (2002).
J.P. Turchet, B. Fournel and G. Estienne, Pipe Decontamination Involving String-Foam Circulation, ICONE 10, Arlington, USA (2002).
R.L. Demmer, D.R. Peterman, J.L. Tripp, D.C. Cooper and K.E. Wright, Long Lasting Decontamination Foam, US Patent 7,846,888 (2010).
B.M. Choudary, M.L. Kantam, K.V.S. Ranganath and K.K. Rao, Angew. Chem. Int. Ed., 44, 322 (2005); doi:10.1002/anie.200461070.
N.F. Djabbarah and D.T. Wasan, Chem. Eng. Sci., 37, 175 (1982); doi:10.1016/0009-2509(82)80152-8.
B.P. Binks and R. Murakami, Nat. Mater., 5, 865 (2006); doi:10.1038/nmat1757.