Copyright (c) 2024 Mohammad Auwal Sa'ad, Manickam Ravichandran, Shivkanya Fuloria, Lalitha Pattabhiraman, Veerasamy Ravichandran, Faizul Fikri Mohd Yusop, Neeraj Kumar Fuloria
This work is licensed under a Creative Commons Attribution 4.0 International License.
In silico Analysis of Antiviral Potential of New Coumarin Analogues against Coronavirus
Corresponding Author(s) : Shivkanya Fuloria
Asian Journal of Chemistry,
Vol. 36 No. 7 (2024): Vol 36 Issue 7, 2024
Abstract
In silico designing of new chemical moieties to develop as active therapeutic agents is a continuous process. COVID-19 pandemic realized coronaviruses to pose significant global health threat. Current study presents in silico antiviral potential of novel coumarin analogues (NCAs) against coronaviruses through molecular docking analysis (MDA) and quantitative structure-activity relationship (QSAR) analysis. This study explores the binding affinity and structure-activity relationships of NCAs, focusing on their interaction with the SARS-CoV-2 spike protein N-terminal domain. MDA, particularly highlighting compound 5e, suggests promising binding interactions. Additionally, the QSAR studies identified key molecular descriptors influencing coronavirus inhibition activity and cytotoxicity (CC50), leading to the development of robust QSAR models meeting OECD criteria. These models demonstrate the stability, validity and applicability of NCAs as potential antiviral agents against coronaviruses. The promising result of new coumarin analogues provides a foundation for the development of novel therapeutics aimed to combat coronaviruses.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Mishra, A. Pandey and S. Manvati, Heliyon, 6, e03217 (2020); https://doi.org/10.1016/j.heliyon.2020.e03217
- D. Gupta, E. Guliani and K. Bajaj, Top. Curr. Chem.(Z), 382, 16 (2024); https://doi.org/10.1007/s41061-024-00462-z
- E.K. Akkol, Y. Genç, B. Karpuz, E. Sobarzo-Sánchez and R. Capasso, Cancers, 12, 1959 (2020); https://doi.org/10.3390/cancers12071959
- G. Salgado-Moran, Wilson Cardona V., L. Gerli-Candia, L.H. Mendoza-Huizar and T. Abdizadeh, J. Chil. Chem. Soc., 67, 5521 (2022); https://doi.org/10.4067/S0717-97072022000205521
- M. Özdemir, B. Köksoy, D. Ceyhan, K. Sayin, E. Erçag, M. Bulut and B. Yalçin, J. Biomol. Struct. Dyn., 40, 4905 (2022); https://doi.org/10.1080/07391102.2020.1863263
- D.A. Milenkovic, D.S. Dimic, E.H. Avdovic and Z.S. Markovic, RSC Adv., 10, 35099 (2020); https://doi.org/10.1039/D0RA07062A
- Y. Peng, N. Du, Y. Lei, S. Dorje, J. Qi, T. Luo, G.F. Gao and H. Song, EMBO J., 39, e105938 (2020); https://doi.org/10.15252/embj.2020105938
- S.M. Patil, R.M. Martiz, R. Ramu, P.S. Shirahatti, A. Prakash, J. Chandra S and V.L. Ranganatha, J. Biomol. Struct. Dyn., 40, 13032 (2022); https://doi.org/10.1080/07391102.2021.1978322
- U.R. Abdelmohsen, A. Albohy, B.S. Abdulrazik, S.A. Bayoumi, L.G. Malak, I.S. Khallaf, G. Bringmann and S.F. Farag, RSC Adv., 11, 16970 (2021); https://doi.org/10.1039/D1RA01989A
- A.T. McNutt, P. Francoeur, R. Aggarwal, T. Masuda, R. Meli, M. Ragoza, J. Sunseri and D.R. Koes, J. Cheminform., 13, 43 (2021); https://doi.org/10.1186/s13321-021-00522-2
- Z.M. Alamshany, R.R. Khattab, N.A. Hassan, A.A. El-Sayed, M.A. Tantawy, A. Mostafa and A.A. Hassan, Molecules, 28, 739 (2023); https://doi.org/10.3390/molecules28020739
- R. Veerasamy and R. Karunakaran, J. Genet. Eng. Biotechnol., 20, 58 (2022); https://doi.org/10.1186/s43141-022-00339-y
- M. Shaharyar, A. Mazumder, Salahuddin, R. Garg and R.D. Pandey, Arab. J. Chem., 9, S342 (2016); https://doi.org/10.1016/j.arabjc.2011.04.013
- M.M. Varshney, A. Husain and V. Parcha, Med. Chem. Res., 23, 4034 (2014); https://doi.org/10.1007/s00044-014-0982-4
- S. Sahin and N. Dege, Iran. J. Chem. Chem. Eng., 42, 2451 (2023); https://doi.org/10.30492/IJCCE.2022.559865.5508
- H.Z. Naji and E.M. Hussain, Bionatura, 8, 1 (2023); https://doi.org/10.21931/RB/CSS/2023.08.03.20
- Z. Amer and E.O. Al-Tamimi, History of Medicine, 9, 1205 (2023); https://doi.org/10.17720/2409-5834.v9.1.2023.143
- P. Gramatica, On the Development and Validation of QSAR Models, In: Methods in Molecular Biology, Clifton: N.J., pp. 499–526 (2013).
- R. Veerasamy, H. Rajak, A. Jain, S. Sivadasan, P.V. Christapher and R. Agrawal, Int. J. Drug Design Discov., 2, 511 (2011).
- Y. Lv, S. Ge, Q. Zhu, M. Si, C. Wang and H. He, New J. Chem., 47, 2651 (2023); https://doi.org/10.1039/D2NJ05019F
- R. Abdizadeh, F. Hadizadeh and T. Abdizadeh, Mol. Divers., 26, 1053 (2022); https://doi.org/10.1007/s11030-021-10230-6
- A. Pohler, S. Abdelfatah, M. Riedl, C. Meesters, A. Hildebrandt and T. Efferth, Pharmaceuticals, 15, 1046 (2022); https://doi.org/10.3390/ph15091046
- Y. Wang, X. Ling, C. Zhang, J. Zou, B. Luo, Y. Luo, X. Jia, G. Jia, M. Zhang, J. Hu, T. Liu, Y. Wang, K. Lu, D. Li, J. Ma, C. Liu and Z. Su, Mol. Biomed., 4, 16 (2023); https://doi.org/10.1186/s43556-023-00129-z
- M. Roney, G. Singh, A.K.M.M. Huq, M.S. Forid, W.M.B.W. Ishak, K. Rullah, M.F.F.M. Aluwi and S.N. Tajuddin, Mol. Biotechnol., 66, 696 (2024); https://doi.org/10.1007/s12033-023-00667-5
- P.R. Duchowicz, N.A. Szewczuk and A.B. Pomilio, J. Food Sci. Technol., 56, 5518 (2019); https://doi.org/10.1007/s13197-019-04024-w
- S. Liu, C. Cao and Z. Li, J. Chem. Inf. Comput. Sci., 38, 387 (1998); https://doi.org/10.1021/ci970109z
- N. Schaduangrat, A.A. Malik and C. Nantasenamat, PeerJ, 9, e11716 (2021); https://doi.org/10.7717/peerj.11716
- I. Èabarkapa, M. Acimovic, L. Pezo and V. Tadic, J. Mex. Chem. Soc., 65, 550 (2021); https://doi.org/10.29356/jmcs.v65i4.1515
- O. Dym, I. Xenarios, H. Ke and J. Colicelli, Mol. Pharmacol., 61, 20 (2002); https://doi.org/10.1124/mol.61.1.20
- M.A. Sa’ad, R. Kavitha, S. Fuloria, N.K. Fuloria, M. Ravichandran and P. Lalitha, Antibiotics, 11, 207 (2022); https://doi.org/10.3390/antibiotics11020207
References
S. Mishra, A. Pandey and S. Manvati, Heliyon, 6, e03217 (2020); https://doi.org/10.1016/j.heliyon.2020.e03217
D. Gupta, E. Guliani and K. Bajaj, Top. Curr. Chem.(Z), 382, 16 (2024); https://doi.org/10.1007/s41061-024-00462-z
E.K. Akkol, Y. Genç, B. Karpuz, E. Sobarzo-Sánchez and R. Capasso, Cancers, 12, 1959 (2020); https://doi.org/10.3390/cancers12071959
G. Salgado-Moran, Wilson Cardona V., L. Gerli-Candia, L.H. Mendoza-Huizar and T. Abdizadeh, J. Chil. Chem. Soc., 67, 5521 (2022); https://doi.org/10.4067/S0717-97072022000205521
M. Özdemir, B. Köksoy, D. Ceyhan, K. Sayin, E. Erçag, M. Bulut and B. Yalçin, J. Biomol. Struct. Dyn., 40, 4905 (2022); https://doi.org/10.1080/07391102.2020.1863263
D.A. Milenkovic, D.S. Dimic, E.H. Avdovic and Z.S. Markovic, RSC Adv., 10, 35099 (2020); https://doi.org/10.1039/D0RA07062A
Y. Peng, N. Du, Y. Lei, S. Dorje, J. Qi, T. Luo, G.F. Gao and H. Song, EMBO J., 39, e105938 (2020); https://doi.org/10.15252/embj.2020105938
S.M. Patil, R.M. Martiz, R. Ramu, P.S. Shirahatti, A. Prakash, J. Chandra S and V.L. Ranganatha, J. Biomol. Struct. Dyn., 40, 13032 (2022); https://doi.org/10.1080/07391102.2021.1978322
U.R. Abdelmohsen, A. Albohy, B.S. Abdulrazik, S.A. Bayoumi, L.G. Malak, I.S. Khallaf, G. Bringmann and S.F. Farag, RSC Adv., 11, 16970 (2021); https://doi.org/10.1039/D1RA01989A
A.T. McNutt, P. Francoeur, R. Aggarwal, T. Masuda, R. Meli, M. Ragoza, J. Sunseri and D.R. Koes, J. Cheminform., 13, 43 (2021); https://doi.org/10.1186/s13321-021-00522-2
Z.M. Alamshany, R.R. Khattab, N.A. Hassan, A.A. El-Sayed, M.A. Tantawy, A. Mostafa and A.A. Hassan, Molecules, 28, 739 (2023); https://doi.org/10.3390/molecules28020739
R. Veerasamy and R. Karunakaran, J. Genet. Eng. Biotechnol., 20, 58 (2022); https://doi.org/10.1186/s43141-022-00339-y
M. Shaharyar, A. Mazumder, Salahuddin, R. Garg and R.D. Pandey, Arab. J. Chem., 9, S342 (2016); https://doi.org/10.1016/j.arabjc.2011.04.013
M.M. Varshney, A. Husain and V. Parcha, Med. Chem. Res., 23, 4034 (2014); https://doi.org/10.1007/s00044-014-0982-4
S. Sahin and N. Dege, Iran. J. Chem. Chem. Eng., 42, 2451 (2023); https://doi.org/10.30492/IJCCE.2022.559865.5508
H.Z. Naji and E.M. Hussain, Bionatura, 8, 1 (2023); https://doi.org/10.21931/RB/CSS/2023.08.03.20
Z. Amer and E.O. Al-Tamimi, History of Medicine, 9, 1205 (2023); https://doi.org/10.17720/2409-5834.v9.1.2023.143
P. Gramatica, On the Development and Validation of QSAR Models, In: Methods in Molecular Biology, Clifton: N.J., pp. 499–526 (2013).
R. Veerasamy, H. Rajak, A. Jain, S. Sivadasan, P.V. Christapher and R. Agrawal, Int. J. Drug Design Discov., 2, 511 (2011).
Y. Lv, S. Ge, Q. Zhu, M. Si, C. Wang and H. He, New J. Chem., 47, 2651 (2023); https://doi.org/10.1039/D2NJ05019F
R. Abdizadeh, F. Hadizadeh and T. Abdizadeh, Mol. Divers., 26, 1053 (2022); https://doi.org/10.1007/s11030-021-10230-6
A. Pohler, S. Abdelfatah, M. Riedl, C. Meesters, A. Hildebrandt and T. Efferth, Pharmaceuticals, 15, 1046 (2022); https://doi.org/10.3390/ph15091046
Y. Wang, X. Ling, C. Zhang, J. Zou, B. Luo, Y. Luo, X. Jia, G. Jia, M. Zhang, J. Hu, T. Liu, Y. Wang, K. Lu, D. Li, J. Ma, C. Liu and Z. Su, Mol. Biomed., 4, 16 (2023); https://doi.org/10.1186/s43556-023-00129-z
M. Roney, G. Singh, A.K.M.M. Huq, M.S. Forid, W.M.B.W. Ishak, K. Rullah, M.F.F.M. Aluwi and S.N. Tajuddin, Mol. Biotechnol., 66, 696 (2024); https://doi.org/10.1007/s12033-023-00667-5
P.R. Duchowicz, N.A. Szewczuk and A.B. Pomilio, J. Food Sci. Technol., 56, 5518 (2019); https://doi.org/10.1007/s13197-019-04024-w
S. Liu, C. Cao and Z. Li, J. Chem. Inf. Comput. Sci., 38, 387 (1998); https://doi.org/10.1021/ci970109z
N. Schaduangrat, A.A. Malik and C. Nantasenamat, PeerJ, 9, e11716 (2021); https://doi.org/10.7717/peerj.11716
I. Èabarkapa, M. Acimovic, L. Pezo and V. Tadic, J. Mex. Chem. Soc., 65, 550 (2021); https://doi.org/10.29356/jmcs.v65i4.1515
O. Dym, I. Xenarios, H. Ke and J. Colicelli, Mol. Pharmacol., 61, 20 (2002); https://doi.org/10.1124/mol.61.1.20
M.A. Sa’ad, R. Kavitha, S. Fuloria, N.K. Fuloria, M. Ravichandran and P. Lalitha, Antibiotics, 11, 207 (2022); https://doi.org/10.3390/antibiotics11020207