Copyright (c) 2024 Gurinderdeep Singh
This work is licensed under a Creative Commons Attribution 4.0 International License.
Exploring Indolyl Triazoles: Synthesis, Computational Profiling and Antimicrobial Assessment
Corresponding Author(s) : Gurinderdeep Singh
Asian Journal of Chemistry,
Vol. 36 No. 9 (2024): Vol 36 Issue 9, 2024
Abstract
In this work, a series of new indolyl-triazole compounds (IT1-8) were synthesized, characterized and evaluated for their in vitro antimicrobial activities. The synthesis involved reactions of indole acetic acid and hydrazine, followed by cyclization with various reagents, yielding triazole compounds elucidated by TLC, IR, NMR, and mass spectral data. Computational profiling using PASS and Molinspiration indicated potential antitubercular and anticancer activities, with compounds IT1 and IT2 showing high bioactivity scores. ProTox 3.0 analysis identified compound IT5 as the safest compound regarding toxicity. The synthesized indolyl-triazoles exhibited significant antimicrobial activity, especially against Mycobacterium tuberculosis and various bacterial strains. The experimental assessments revealed unexpected antibacterial activities, particularly in compounds IT5 and IT6, highlighting the significance of halogenated phenyl rings and indolyl moieties in their efficacy. The study underscores the potential of indolyl-triazoles as antimicrobial agents and the role of computational tools in drug discovery, while also noting the discrepancy between in silico predictions and experimental results, suggesting the need for further exploration of structure-activity relationships (SAR).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Rehman, J. Infect Public Health, 16, 611 (2023); https://doi.org/10.1016/j.jiph.2023.02.021
- Antimicrobial Resistance Collaborators, The Lancet, 399, 629 (2022); https://doi.org/10.1016/S0140-6736(21)02724-0
- F. Prestinaci, P. Pezzotti and A. Pantosti, Pathog. Glob. Health, 109, 309 (2015); https://doi.org/10.1179/2047773215Y.0000000030
- K.W.K. Tang, B.C. Millar and J.E. Moore, Br. J. Biomed. Sci., 80, 11387 (2023); https://doi.org/10.3389/bjbs.2023.11387
- O.B. Jonas, A. Irwin, F.C.J. Berthe, F.G. Le Gall and P.V. Marquez, Drug-Resistant Infections: A Threat to Our Economic Future: Final Report, HNP/Agriculture Global Antimicrobial Resistance Initiative Washington, D.C.: World Bank Group (2017); http://documents.worldbank.org/curated/en/323311493396993758/final-report
- D. Vishwakarma, A. Gaidhane, S. Sahu and A.S. Rathod, Cureus, 15, e50222 (2023); https://doi.org/10.7759/cureus.50222
- S. Ajulo and B. Awosile, PLoS One, 19, e0297921 (2024); https://doi.org/10.1371/jour nal.pone.0297921
- M. Aatif, M.A. Raza, K. Javed, S.M. Nashre-Ul-Islam, M. Farhan and M.W. Alam, Antibiotics, 11, 1750 (2022); https://doi.org/10.3390/antibiotics11121750
- R. Aggarwal and G. Sumran, Eur. J. Med. Chem., 205, 112652 (2020); https://doi.org/10.1016/j.ejmech.2020.112652
- H. Shirinzadeh, S. Süzen, N. Altanlar and A.D. Westwell, Turkish J. Pharm. Sci., 15, 291 (2018); https://doi.org/10.4274/tjps.55707
- N. Teraiya, K. Agrawal, T.M. Patel, A. Patel, S. Patel, U. Shah, S. Shah, K. Rathod and K. Patel, Curr. Drug Discov. Technol., 20, 9 (2023); https://doi.org/10.2174/1570163820666230505120553
- A. Dorababu, RSC Med. Chem., 11, 1335 (2020); https://doi.org/10.1039/d0md 00288g
- G.S. Reddy and M. Pal, Curr. Med. Chem., 28, 4531 (2021); https://doi.org/10.2174/0929867327666200918144709
- B.S. Mathada and S.B. Somappa, J. Mol. Struct., 1261, 132808 (2022); https://doi.org/10.1016/j.molstruc.2022.132808
- S.A. Al-Hussain, T.A. Farghaly, M.E.A. Zaki, H.G. Abdulwahab, N.T. Al-Qurashi and Z.A. Muhammad, Bioorgan. Chem., 105, 104330 (2020); https://doi.org/10.1016/ j.bioorg.2020.104330
- F. Pagniez, N. Lebouvier, Y.M. Na, I. Ourliac-Garnier, C. Picot, M. Le Borgne and P. Le Pape, J. Enzyme Inhib. Med. Chem., 35, 398 (2020); https://doi.org/10.1080/14756366.2019.1705292
- H. Jahan, N.N. Siddiqui, S. Iqbal, F.Z. Basha, M.A. Khan, T. Aslam and M.I. Choudhary, Life Sci., 291, 120282 (2022); https://doi.org/10.1016/j.lfs.2021.120282
- M.F. Youssef, M.S. Nafie, E.E. Salama, A.T.A. Boraei and E.M. Gad, ACS Omega, 7, 45665 (2022); https://doi.org/10.1021/acsomega.2c06531
- R. Reddyrajula, U. Etikyala, V. Manga and U.K. Dalimba, Bioorg. Med. Chem., 98, 117562 (2024); https://doi.org/10.1016/j.bmc.2023.117562
- A.B. Danne, A.S. Choudhari, S. Chakraborty, D. Sarkar, V.M. Khedkar and B.B. Shingate, Medchemcomm, 9, 1114 (2018); https://doi.org/10.1039/c8md00055g
- D.A. Filimonov, A.A. Lagunin, T.A. Gloriozova, D.S. Druzhilovskii, A.V. Rudik, P.V. Pogodin and V.V. Poroikov, Chem. Heterocycl. Compd., 50, 444 (2014); https://doi.org/10.1007/s10593-014-1496-1
- A. Ayar, M. Aksahin, S. Mesci, B. Yazgan, M. Gül and T. Yildirim, Curr. Computeraided Drug Des., 18, 52 (2022); https://doi.org/10.2174/1573409917666210223105722
- P. Banerjee, E. Kemmler, M. Dunkel and R. Preissner, Nucleic Acids Res., 52, W513 (2024); https://doi.org/10.1093/nar/gkae303
- S.G. Franzblau, R.S. Witzig, J.C. McLaughlin, P. Torres, G. Madico, A. Hernandez, M.T. Degnan, M.B. Cook, V.K. Quenzer, R.M. Ferguson and R.H. Gilman, J. Clin. Microbiol., 36, 362 (1998); https://doi.org/10.1128/JCM.36.2.362-366.1998
- CLSI, M100 Performance Standards for Antimicrobial Susceptibility Testing, CLSI; Wayne, PA, USA, edn. 29 (2019).
References
S. Rehman, J. Infect Public Health, 16, 611 (2023); https://doi.org/10.1016/j.jiph.2023.02.021
Antimicrobial Resistance Collaborators, The Lancet, 399, 629 (2022); https://doi.org/10.1016/S0140-6736(21)02724-0
F. Prestinaci, P. Pezzotti and A. Pantosti, Pathog. Glob. Health, 109, 309 (2015); https://doi.org/10.1179/2047773215Y.0000000030
K.W.K. Tang, B.C. Millar and J.E. Moore, Br. J. Biomed. Sci., 80, 11387 (2023); https://doi.org/10.3389/bjbs.2023.11387
O.B. Jonas, A. Irwin, F.C.J. Berthe, F.G. Le Gall and P.V. Marquez, Drug-Resistant Infections: A Threat to Our Economic Future: Final Report, HNP/Agriculture Global Antimicrobial Resistance Initiative Washington, D.C.: World Bank Group (2017); http://documents.worldbank.org/curated/en/323311493396993758/final-report
D. Vishwakarma, A. Gaidhane, S. Sahu and A.S. Rathod, Cureus, 15, e50222 (2023); https://doi.org/10.7759/cureus.50222
S. Ajulo and B. Awosile, PLoS One, 19, e0297921 (2024); https://doi.org/10.1371/jour nal.pone.0297921
M. Aatif, M.A. Raza, K. Javed, S.M. Nashre-Ul-Islam, M. Farhan and M.W. Alam, Antibiotics, 11, 1750 (2022); https://doi.org/10.3390/antibiotics11121750
R. Aggarwal and G. Sumran, Eur. J. Med. Chem., 205, 112652 (2020); https://doi.org/10.1016/j.ejmech.2020.112652
H. Shirinzadeh, S. Süzen, N. Altanlar and A.D. Westwell, Turkish J. Pharm. Sci., 15, 291 (2018); https://doi.org/10.4274/tjps.55707
N. Teraiya, K. Agrawal, T.M. Patel, A. Patel, S. Patel, U. Shah, S. Shah, K. Rathod and K. Patel, Curr. Drug Discov. Technol., 20, 9 (2023); https://doi.org/10.2174/1570163820666230505120553
A. Dorababu, RSC Med. Chem., 11, 1335 (2020); https://doi.org/10.1039/d0md 00288g
G.S. Reddy and M. Pal, Curr. Med. Chem., 28, 4531 (2021); https://doi.org/10.2174/0929867327666200918144709
B.S. Mathada and S.B. Somappa, J. Mol. Struct., 1261, 132808 (2022); https://doi.org/10.1016/j.molstruc.2022.132808
S.A. Al-Hussain, T.A. Farghaly, M.E.A. Zaki, H.G. Abdulwahab, N.T. Al-Qurashi and Z.A. Muhammad, Bioorgan. Chem., 105, 104330 (2020); https://doi.org/10.1016/ j.bioorg.2020.104330
F. Pagniez, N. Lebouvier, Y.M. Na, I. Ourliac-Garnier, C. Picot, M. Le Borgne and P. Le Pape, J. Enzyme Inhib. Med. Chem., 35, 398 (2020); https://doi.org/10.1080/14756366.2019.1705292
H. Jahan, N.N. Siddiqui, S. Iqbal, F.Z. Basha, M.A. Khan, T. Aslam and M.I. Choudhary, Life Sci., 291, 120282 (2022); https://doi.org/10.1016/j.lfs.2021.120282
M.F. Youssef, M.S. Nafie, E.E. Salama, A.T.A. Boraei and E.M. Gad, ACS Omega, 7, 45665 (2022); https://doi.org/10.1021/acsomega.2c06531
R. Reddyrajula, U. Etikyala, V. Manga and U.K. Dalimba, Bioorg. Med. Chem., 98, 117562 (2024); https://doi.org/10.1016/j.bmc.2023.117562
A.B. Danne, A.S. Choudhari, S. Chakraborty, D. Sarkar, V.M. Khedkar and B.B. Shingate, Medchemcomm, 9, 1114 (2018); https://doi.org/10.1039/c8md00055g
D.A. Filimonov, A.A. Lagunin, T.A. Gloriozova, D.S. Druzhilovskii, A.V. Rudik, P.V. Pogodin and V.V. Poroikov, Chem. Heterocycl. Compd., 50, 444 (2014); https://doi.org/10.1007/s10593-014-1496-1
A. Ayar, M. Aksahin, S. Mesci, B. Yazgan, M. Gül and T. Yildirim, Curr. Computeraided Drug Des., 18, 52 (2022); https://doi.org/10.2174/1573409917666210223105722
P. Banerjee, E. Kemmler, M. Dunkel and R. Preissner, Nucleic Acids Res., 52, W513 (2024); https://doi.org/10.1093/nar/gkae303
S.G. Franzblau, R.S. Witzig, J.C. McLaughlin, P. Torres, G. Madico, A. Hernandez, M.T. Degnan, M.B. Cook, V.K. Quenzer, R.M. Ferguson and R.H. Gilman, J. Clin. Microbiol., 36, 362 (1998); https://doi.org/10.1128/JCM.36.2.362-366.1998
CLSI, M100 Performance Standards for Antimicrobial Susceptibility Testing, CLSI; Wayne, PA, USA, edn. 29 (2019).