Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Enhanced Physical and Thermal Performance of Expanded Graphite-Based Heat Sink for LED Radiator
Corresponding Author(s) : Won-Chun Oh
Asian Journal of Chemistry,
Vol. 27 No. 11 (2015): Vol 27 Issue 11
Abstract
An experimental study was carried out to investigate the heat transfer characteristics of Cu and Al–modified expanded graphite heat sinks. In this study, the heat sinks were composed of expanded graphite as an active material, Cu and Al as heat transfer enhancement material and resin as a binder. Graphite with high purity was obtained via treated with different amount of Na2CO3. The as-prepared heat sinks were characterized by XRD, pH, SEM, electrical resistivity, bending strength and thermal analysis. The metal Al modified expanded graphite composite heat sink in our experiment exhibited a good rate of capability in physical and thermal performances. Sample GA5-300 showed highest thermal diffusivity and thermal conductivity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Ghosh and W.C. Oh, J. Photocatal. Sci., 3, 17 (2012).
- M. Sprinkle, M. Ruan, Y. Hu, J. Hankinson, M. Rubio-Roy, B. Zhang, X. Wu, C. Berger and W.A. de Heer, Nature Nanotechnol., 5, 727 (2010); doi:10.1038/nnano.2010.192.
- A. Gao, E. Zoethout, J.M. Sturm, C.J. Lee and F. Bijkerk, Appl. Surf. Sci., 317, 745 (2014); doi:10.1016/j.apsusc.2014.08.177.
- Z. Li, W.G. Sun, G. Wang and Z.G. Wu, Sol. Energy Mater. Sol. Cells, 128, 447 (2014); doi:10.1016/j.solmat.2014.06.023.
- A.M. Abyzov, S.V. Kidalov and F.M. Shakhov, Appl. Therm. Eng., 48, 72 (2012); doi:10.1016/j.applthermaleng.2012.04.063.
- X.H. Qu, L. Zhang, M. Wu and S.B. Ren, Prog. Nat. Sci., 21, 189 (2011); doi:10.1016/S1002-0071(12)60029-X.
- L. Zhong, X.W. Zhang, Y. Luan, G. Wang, Y.H. Feng and D.L. Feng, Sol. Energy, 107, 63 (2014); doi:10.1016/j.solener.2014.05.019.
- C. Zhou, G. Ji, Z. Chen, M. Wang, A. Addad, D. Schryvers and H. Wang, Mater. Des., 63, 719 (2014); doi:10.1016/j.matdes.2014.07.009.
- W.W. Zhao, G. Kido, S. Harada, M. Unno and H. Noguchi, J. Colloid Interf. Sci., 431, 8 (2014); doi:10.1016/j.jcis.2014.06.018.
- M. Zamengo, J. Ryu and Y. Kato, Appl. Therm. Eng., 69, 29 (2014); doi:10.1016/j.applthermaleng.2014.04.037.
- J.B. Xiao, J. Huang, P.P. Zhu, C.H. Wang and X.X. Li, Thermochim. Acta, 587, 52 (2014); doi:10.1016/j.tca.2014.04.021.
- S. Kim, J. Ryu and Y. Kato, Appl. Therm. Eng., 66, 274 (2014); doi:10.1016/j.applthermaleng.2014.02.024.
- X.B. Wang, W.F. Zhu, X. Wei, Y.X. Zhang and H.H. Chen, Mater. Sci. Eng. B, 185, 1 (2014); doi:10.1016/j.mseb.2014.01.004.
- D.X. Li, P.H. Shi, J.B. Wang, J.B. Li and R.J. Su, Chem. Eng. J., 237, 8 (2014); doi:10.1016/j.cej.2013.09.069.
- J.K. Kiplagat, R.Z. Wang, R.G. Oliveira and T.X. Li, Sol. Energy, 84, 1587 (2010); doi:10.1016/j.solener.2010.06.014.
- F. Hassouna, A. Laachachi, D. Chapron, Y. El Mouedden, V. Toniazzo and D. Ruch, Oly. Degrad. Stabil, 96, 2040 (2011); doi:10.1016/j.polymdegradstab.2011.10.005.
- C.Y. Zhao and Z.G. Wu, Sol. Energy Mater. Sol. Cells, 95, 636 (2011); doi:10.1016/j.solmat.2010.09.032.
- U.S. Hong, S.L. Jung, K.H. Cho, M.H. Cho, S.J. Kim and H. Jang, Wear, 266, 739 (2009); doi:10.1016/j.wear.2008.08.008.
- P. Krawczyk, Chem. Eng. J., 172, 1096 (2011); doi:10.1016/j.cej.2011.06.005.
- I.M. Afanasov, O.I. Lebedev, B.A. Kolozhvary, A.V. Smirnov and G. Van Tendeloo, New Carbon Mater., 26, 335 (2011); doi:10.1016/S1872-5805(11)60085-1.
- A. Malas, P. Pal and C.K. Das, Mater. Des., 55, 664 (2014); doi:10.1016/j.matdes.2013.10.038.
- Z.D. Meng, K. Ullah, V. Nikam, T. Ghosh, C.Y. Park, H.D. Kwon, S.W. Jang and W.C. Oh, J. Photocatal. Sci., 3, 113 (2012).
- Y. Zhang, Y.D. Xu, L.Y. Gao, L.T. Zhang and L.F. Cheng, Acta Mater. Compos. Sin., 23, 37 (2006).
- X.L. Wang, Q.G. Guo, Y.J. Zhong, X.H. Wei and L. Liu, Renew. Energy, 51, 241 (2013); doi:10.1016/j.renene.2012.09.029.
- J.K. Chen and I.S. Huang, Composites Part B, 44, 698 (2013); doi:10.1016/j.compositesb.2012.01.083.
References
T. Ghosh and W.C. Oh, J. Photocatal. Sci., 3, 17 (2012).
M. Sprinkle, M. Ruan, Y. Hu, J. Hankinson, M. Rubio-Roy, B. Zhang, X. Wu, C. Berger and W.A. de Heer, Nature Nanotechnol., 5, 727 (2010); doi:10.1038/nnano.2010.192.
A. Gao, E. Zoethout, J.M. Sturm, C.J. Lee and F. Bijkerk, Appl. Surf. Sci., 317, 745 (2014); doi:10.1016/j.apsusc.2014.08.177.
Z. Li, W.G. Sun, G. Wang and Z.G. Wu, Sol. Energy Mater. Sol. Cells, 128, 447 (2014); doi:10.1016/j.solmat.2014.06.023.
A.M. Abyzov, S.V. Kidalov and F.M. Shakhov, Appl. Therm. Eng., 48, 72 (2012); doi:10.1016/j.applthermaleng.2012.04.063.
X.H. Qu, L. Zhang, M. Wu and S.B. Ren, Prog. Nat. Sci., 21, 189 (2011); doi:10.1016/S1002-0071(12)60029-X.
L. Zhong, X.W. Zhang, Y. Luan, G. Wang, Y.H. Feng and D.L. Feng, Sol. Energy, 107, 63 (2014); doi:10.1016/j.solener.2014.05.019.
C. Zhou, G. Ji, Z. Chen, M. Wang, A. Addad, D. Schryvers and H. Wang, Mater. Des., 63, 719 (2014); doi:10.1016/j.matdes.2014.07.009.
W.W. Zhao, G. Kido, S. Harada, M. Unno and H. Noguchi, J. Colloid Interf. Sci., 431, 8 (2014); doi:10.1016/j.jcis.2014.06.018.
M. Zamengo, J. Ryu and Y. Kato, Appl. Therm. Eng., 69, 29 (2014); doi:10.1016/j.applthermaleng.2014.04.037.
J.B. Xiao, J. Huang, P.P. Zhu, C.H. Wang and X.X. Li, Thermochim. Acta, 587, 52 (2014); doi:10.1016/j.tca.2014.04.021.
S. Kim, J. Ryu and Y. Kato, Appl. Therm. Eng., 66, 274 (2014); doi:10.1016/j.applthermaleng.2014.02.024.
X.B. Wang, W.F. Zhu, X. Wei, Y.X. Zhang and H.H. Chen, Mater. Sci. Eng. B, 185, 1 (2014); doi:10.1016/j.mseb.2014.01.004.
D.X. Li, P.H. Shi, J.B. Wang, J.B. Li and R.J. Su, Chem. Eng. J., 237, 8 (2014); doi:10.1016/j.cej.2013.09.069.
J.K. Kiplagat, R.Z. Wang, R.G. Oliveira and T.X. Li, Sol. Energy, 84, 1587 (2010); doi:10.1016/j.solener.2010.06.014.
F. Hassouna, A. Laachachi, D. Chapron, Y. El Mouedden, V. Toniazzo and D. Ruch, Oly. Degrad. Stabil, 96, 2040 (2011); doi:10.1016/j.polymdegradstab.2011.10.005.
C.Y. Zhao and Z.G. Wu, Sol. Energy Mater. Sol. Cells, 95, 636 (2011); doi:10.1016/j.solmat.2010.09.032.
U.S. Hong, S.L. Jung, K.H. Cho, M.H. Cho, S.J. Kim and H. Jang, Wear, 266, 739 (2009); doi:10.1016/j.wear.2008.08.008.
P. Krawczyk, Chem. Eng. J., 172, 1096 (2011); doi:10.1016/j.cej.2011.06.005.
I.M. Afanasov, O.I. Lebedev, B.A. Kolozhvary, A.V. Smirnov and G. Van Tendeloo, New Carbon Mater., 26, 335 (2011); doi:10.1016/S1872-5805(11)60085-1.
A. Malas, P. Pal and C.K. Das, Mater. Des., 55, 664 (2014); doi:10.1016/j.matdes.2013.10.038.
Z.D. Meng, K. Ullah, V. Nikam, T. Ghosh, C.Y. Park, H.D. Kwon, S.W. Jang and W.C. Oh, J. Photocatal. Sci., 3, 113 (2012).
Y. Zhang, Y.D. Xu, L.Y. Gao, L.T. Zhang and L.F. Cheng, Acta Mater. Compos. Sin., 23, 37 (2006).
X.L. Wang, Q.G. Guo, Y.J. Zhong, X.H. Wei and L. Liu, Renew. Energy, 51, 241 (2013); doi:10.1016/j.renene.2012.09.029.
J.K. Chen and I.S. Huang, Composites Part B, 44, 698 (2013); doi:10.1016/j.compositesb.2012.01.083.