Copyright (c) 2024 Shipra Gautam, Poonam Rawat, Prakash, Anant Ram, Amul Darwari, Sharda Pandey, Anupama Pandey, RamNiwas Singh
This work is licensed under a Creative Commons Attribution 4.0 International License.
Ecofriendly Synthesis, Spectroscopic Analysis and in silico Study of Coumarin Hydrazide-Hydrazone Derivative Targeted against HIV and SARS-CoV-2
Corresponding Author(s) : R.N. Singh
Asian Journal of Chemistry,
Vol. 36 No. 9 (2024): Vol 36 Issue 9, 2024
Abstract
Coumarin based hydrazide-hydrazone (CHH) derivative was synthesized and evaluated for in silico antiviral activity against SARS-CoV-2 and anti-HIV activity. The experimental techniques (FT-IR, 1H NMR, 13C NMR and UV-vis) and computational calculations (B3LYP functional and 6-31G(d,p)/6-311G(d,p) level of theory) were used for the detailed analysis of the synthesized compound. By following the mechanosynthesis methodology, the excellent yield and reduction in reaction time were observed in the grinding method when compared to conventional method. The rotational barrier between conformer I and II of CHH was found to be 5.102 Kcal/mol in the gas phase. The FT-IR spectrum was carried out to support the hydrogen bonding pattern proposed by reported crystalline structure. The electronic descriptors studies indicate CHH used as useful synthon for new heterocyclic compounds. The first static hyperpolarizability (β0) of the CHH was calculated as 17.47 and 25.93 10–30 esu at B3LYP/6-31G (d,p) and B3LYP/6-311G(d,p) basis set indicates CHH may be used as non-linear optical material. The ADMET, isoelectronic molecular electrostatic potential surfaces (MEPS), NBO and QTAIM studies were also performed. According to molecular docking, the synthesized CHH compound showed strong antiviral efficacy against SARS COV-2 major protein (Mpro) with PDB code 6lu7 and anti-HIV antibody DH501, an unmutated common ancestor with PDB ID 6p3b.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.J. Newman and G.M. Cragg, J. Nat. Prod., 83, 770 (2020); https://doi.org/10.1021/acs.jnatprod.9b01285
- Q.C. Ren, C. Gao, Z. Xu, L.S. Feng, M.L. Liu, X. Wu and F. Zhao, Curr. Top. Med. Chem., 18, 101 (2018); https://doi.org/10.2174/1568026618666180221114515
- T. Abe, Y. Marutani and I. Shoji, Microbiol. Immunol., 63, 51 (2019); https://doi.org/10.1111/1348-0421.12669
- Y. Hu, W. Chen, Y. Shen, B. Zhu and G.X. Wang, Bioorg. Med. Chem. Lett., 29, 1749 (2019); https://doi.org/10.1016/j.bmcl.2019.05.019
- T.M. Khomenko, V.V. Zarubaev, I.R. Orshanskaya, R.A. Kadyrova, V.A. Sannikova, D.V. Korchagina, K.P. Volcho and N.F. Salakhutdinov, Bioorg. Med. Chem. Lett., 27, 2920 (2017); https://doi.org/10.1016/j.bmcl.2017.04.091
- L. De Luca, F.E. Agharbaoui, R. Gitto, M.R. Buemi, F. Christ, Z. Debyser and S. Ferro, Mol. Inform., 35, 460 (2016); https://doi.org/10.1002/minf.201501034
- T.O. Olomola, R. Klein, N. Mautsa, Y. Sayed and P.T. Kaye, Bioorg. Med. Chem., 21, 1964 (2013); https://doi.org/10.1016/j.bmc.2013.01.025
- P. Zhou, Y. Takaishi, H. Duan, B. Chen, G. Honda, M. Itoh, Y. Takeda, O.K. Kodzhimatov and K.H. Lee, Phytochemistry, 51, 781 (2000); https://doi.org/10.1016/S0031-9422(99)00554-3
- C.I. Paules, H.D. Marston and A.S. Fauci, JAMA, 323, 707 (2020); https://doi.org/10.1001/jama.2020.0757
- S. Mishra, A. Pandey and S. Manvati, Heliyon, 6, e03217 (2020); https://doi.org/10.1016/j.heliyon.2020.e03217
- M.Z. Hassan, H. Osman, M.A. Ali and M.J. Ahsan, Eur. J. Med. Chem., 123, 236 (2016); https://doi.org/10.1016/j.ejmech.2016.07.056
- K.N. Venugopala, V. Rashmi and B. Odhav, BioMed Res. Int., 2013, 963248 (2013); https://doi.org/10.1155/2013/963248
- Y. Shikishima, Y. Takaishi, G. Honda, Y. Takeda, O.K. Kodzhimatov, M. Ito, O. Ashurmetov and K.H. Lee, Chem. Pharm. Bull., 49, 877 (2001); https://doi.org/10.1248/cpb.49.877
- N. Márquez, R. Sancho, L.M. Bedoya, J. Alcamí, J.L. López-Pérez, A. San Feliciano, B.L. Fiebich and E. Muñoz, Antivir. Res., 66, 137 (2005); doi.org/10.1016/j.antiviral. 2005. 02.006
- N.F. Holguín, J. Frau and D.G. Mitnik, Front Chem., (2021); https://doi.org/10.3389/fchem.2021.708364
- S. Yadav, S. Singh and C. Gupta, Curr. Res. Green Sust. Chem., 5, 100260 (2022); https://doi.org/10.1016/j.crgsc.2022.100260
- M. Molnar, M. Lonèariæ and M. Kovaè, Curr. Org. Chem., 24, 4 (2020); https://doi.org/10.2174/1385272824666200120144305
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman and D.J. Fox, Gaussian, Inc. Wallingford CT (2010).
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
- C.T. Lee, W.T. Yang and R.G.B. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
- G.A. Petersson and M.A. Al-laham, J. Chem. Phys., 94, 6081 (1991); https://doi.org/10.1063/1.460447
- G.A. Petersson, A. Bennett, T.G. Tensfeldt, M.A. AlLaham, W.A. Shirley and J. Mantzaris, J. Chem. Phys., 89, 2193 (1988); https://doi.org/10.1063/1.455064
- K.C. Mariamma, H.T. Varghese, C.Y. Panicker, K. John, J. Vinsova and C. Van Alsenoy, Spectrochim. Acta A Mol. Biomol. Spectrosc., 112, 161 (2013); https://doi.org/10.1016/j.saa.2013.04.052
- K.N. Chethan Prathap and N.K. Lokanath, J. Mol. Struct., 1158, 26 (2018); https://doi.org/10.1016/j.molstruc.2018.01.007
- A.P. Scott and L. Radom, J. Phys. Chem., 100, 16502 (1996); https://doi.org/10.1021/jp960976r
- NIST Computational Chemistry Comparison and Benchmark Database NIST Standard Reference Database Number 101, Russell D. Johnson III (2022); https://doi.org/10.18434/T47C7Z
- R. Alphonse, A. Varghese, L. George and A. Nizam, J. Mol. Liq., 215, 387 (2016); https://doi.org/10.1016/j.molliq.2015.12.050
- R.G. Pearson, Chemical Hardness: Applications from Molecules to Solids Wiley- VCH, Weinheim, Germany (1997).
- R.E. Aderne, B.G.A.L. Borges, H.C. Ávila, F. von Kieseritzky, J. Hellberg, M. Koehler, M. Cremona, L.S. Roman, C.M. Araujo, M.L.M. Rocco and C.F.N. Marchiori, Mater. Adv., 3, 1791 (2022); https://doi.org/10.1039/D1MA00652E
- M. Snehalatha, C. Ravikumar, I. Hubert Joe, N. Sekar and V.S. Jayakumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 72, 654 (2009); https://doi.org/10.1016/j.saa.2008.11.017
- D.W. Schwenke and D.G. Truhlar, J. Chem. Phys., 82, 2418 (1985); https://doi.org/10.1063/1.448335
- M. Gutowski, J.G.C.M. Van Duijneveldt-Van de Rijdt, J.H. Van Lenthe and F.B. Van Duijneveldt, J. Chem. Phys., 98, 4728 (1993); https://doi.org/10.1063/1.465106
- F. Weinhold, C.R. Landis and E.D. Glendening, Int. Rev. Phys. Chem., 35, 399 (2016); https://doi.org/10.1080/0144235X.2016.1192262
- D.A. Kleinman, Phys. Rev., 126, 1977 (1962); https://doi.org/10.1103/PhysRev.126.1977
- H. Alyar, Z. Kantarci, M. Bahat and E. Kasap, J. Mol. Struct., 834-836, 516 (2007); https://doi.org/10.1016/j.molstruc.2006.11.066
- J.L. Oudar and D.S. Chemla, J. Chem. Phys., 66, 2664 (1977); https://doi.org/10.1063/1.434213
- N. Sukumar, A Matter of Density: Exploring the Electron Density Concept in the Chemical, Biological, and Materials Sciences, Wiley-Blackwell (2012).
- P. Rawat and R.N. Singh, Spectrochim. Acta A Mol. Biomol. Spectrosc., 140, 344 (2015); https://doi.org/10.1016/j.saa.2014.12.080
- R.G. Parr, L. Szentpály and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999); https://doi.org/10.1021/ja983494x
- R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York (1989).
- A. Daina, O. Michielin and V. Zoete, Sci. Rep., 7, 42717 (2017); https://doi.org/10.1038/srep42717
- M. Alsawalha, S.R. Bolla, N. Kandakatla, V. Srinivasadesikan, V.P. Veeraraghavan and K.M. Surapaneni, Bioinform., 15, 380 (2019); https://doi.org/10.6026/97320630015380
- R. Yuan, S. Madani, X.X. Wei, K. Reynolds and S.M. Huang, Drug Metab. Dispos., 30, 1311 (2002); https://doi.org/10.1124/dmd.30.12.1311
- J.E. McGraw, A Handbook of Pharmacogenomics and Stratified Medicine, Elsevier Publication (2014).
- F. Cheng, W. Li, Y. Zhou, J. Shen, Z. Wu, G. Liu, P.W. Lee and Y.T. Admet, J. Chem. Inf. Mod., 52, 3099 (2012); https://doi.org/10.1021/ci300367a
- M.M. Julie, T. Prabhu, E. Elamuruguporchelvi, F.B. Asif, S. Muthu and A. Irfan, J. Mol. Liq., 336, 116335 (2021); https://doi.org/10.1016/j.molliq.2021.116335
- L. Schrödinger and W. DeLano, PyMOL. 2020; http://www.pymol.org/pymol
- https://www.ebi.ac.uk/thornton-srv/databases/pdbsum/
- A.T. Dubis, S.J. Grabowski, D.B. Romanowska, T. Misiaszek and J. Leszczynski, J. Phys. Chem. A, 106, 10613 (2002); https://doi.org/10.1021/jp0211786
References
D.J. Newman and G.M. Cragg, J. Nat. Prod., 83, 770 (2020); https://doi.org/10.1021/acs.jnatprod.9b01285
Q.C. Ren, C. Gao, Z. Xu, L.S. Feng, M.L. Liu, X. Wu and F. Zhao, Curr. Top. Med. Chem., 18, 101 (2018); https://doi.org/10.2174/1568026618666180221114515
T. Abe, Y. Marutani and I. Shoji, Microbiol. Immunol., 63, 51 (2019); https://doi.org/10.1111/1348-0421.12669
Y. Hu, W. Chen, Y. Shen, B. Zhu and G.X. Wang, Bioorg. Med. Chem. Lett., 29, 1749 (2019); https://doi.org/10.1016/j.bmcl.2019.05.019
T.M. Khomenko, V.V. Zarubaev, I.R. Orshanskaya, R.A. Kadyrova, V.A. Sannikova, D.V. Korchagina, K.P. Volcho and N.F. Salakhutdinov, Bioorg. Med. Chem. Lett., 27, 2920 (2017); https://doi.org/10.1016/j.bmcl.2017.04.091
L. De Luca, F.E. Agharbaoui, R. Gitto, M.R. Buemi, F. Christ, Z. Debyser and S. Ferro, Mol. Inform., 35, 460 (2016); https://doi.org/10.1002/minf.201501034
T.O. Olomola, R. Klein, N. Mautsa, Y. Sayed and P.T. Kaye, Bioorg. Med. Chem., 21, 1964 (2013); https://doi.org/10.1016/j.bmc.2013.01.025
P. Zhou, Y. Takaishi, H. Duan, B. Chen, G. Honda, M. Itoh, Y. Takeda, O.K. Kodzhimatov and K.H. Lee, Phytochemistry, 51, 781 (2000); https://doi.org/10.1016/S0031-9422(99)00554-3
C.I. Paules, H.D. Marston and A.S. Fauci, JAMA, 323, 707 (2020); https://doi.org/10.1001/jama.2020.0757
S. Mishra, A. Pandey and S. Manvati, Heliyon, 6, e03217 (2020); https://doi.org/10.1016/j.heliyon.2020.e03217
M.Z. Hassan, H. Osman, M.A. Ali and M.J. Ahsan, Eur. J. Med. Chem., 123, 236 (2016); https://doi.org/10.1016/j.ejmech.2016.07.056
K.N. Venugopala, V. Rashmi and B. Odhav, BioMed Res. Int., 2013, 963248 (2013); https://doi.org/10.1155/2013/963248
Y. Shikishima, Y. Takaishi, G. Honda, Y. Takeda, O.K. Kodzhimatov, M. Ito, O. Ashurmetov and K.H. Lee, Chem. Pharm. Bull., 49, 877 (2001); https://doi.org/10.1248/cpb.49.877
N. Márquez, R. Sancho, L.M. Bedoya, J. Alcamí, J.L. López-Pérez, A. San Feliciano, B.L. Fiebich and E. Muñoz, Antivir. Res., 66, 137 (2005); doi.org/10.1016/j.antiviral. 2005. 02.006
N.F. Holguín, J. Frau and D.G. Mitnik, Front Chem., (2021); https://doi.org/10.3389/fchem.2021.708364
S. Yadav, S. Singh and C. Gupta, Curr. Res. Green Sust. Chem., 5, 100260 (2022); https://doi.org/10.1016/j.crgsc.2022.100260
M. Molnar, M. Lonèariæ and M. Kovaè, Curr. Org. Chem., 24, 4 (2020); https://doi.org/10.2174/1385272824666200120144305
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman and D.J. Fox, Gaussian, Inc. Wallingford CT (2010).
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
C.T. Lee, W.T. Yang and R.G.B. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
G.A. Petersson and M.A. Al-laham, J. Chem. Phys., 94, 6081 (1991); https://doi.org/10.1063/1.460447
G.A. Petersson, A. Bennett, T.G. Tensfeldt, M.A. AlLaham, W.A. Shirley and J. Mantzaris, J. Chem. Phys., 89, 2193 (1988); https://doi.org/10.1063/1.455064
K.C. Mariamma, H.T. Varghese, C.Y. Panicker, K. John, J. Vinsova and C. Van Alsenoy, Spectrochim. Acta A Mol. Biomol. Spectrosc., 112, 161 (2013); https://doi.org/10.1016/j.saa.2013.04.052
K.N. Chethan Prathap and N.K. Lokanath, J. Mol. Struct., 1158, 26 (2018); https://doi.org/10.1016/j.molstruc.2018.01.007
A.P. Scott and L. Radom, J. Phys. Chem., 100, 16502 (1996); https://doi.org/10.1021/jp960976r
NIST Computational Chemistry Comparison and Benchmark Database NIST Standard Reference Database Number 101, Russell D. Johnson III (2022); https://doi.org/10.18434/T47C7Z
R. Alphonse, A. Varghese, L. George and A. Nizam, J. Mol. Liq., 215, 387 (2016); https://doi.org/10.1016/j.molliq.2015.12.050
R.G. Pearson, Chemical Hardness: Applications from Molecules to Solids Wiley- VCH, Weinheim, Germany (1997).
R.E. Aderne, B.G.A.L. Borges, H.C. Ávila, F. von Kieseritzky, J. Hellberg, M. Koehler, M. Cremona, L.S. Roman, C.M. Araujo, M.L.M. Rocco and C.F.N. Marchiori, Mater. Adv., 3, 1791 (2022); https://doi.org/10.1039/D1MA00652E
M. Snehalatha, C. Ravikumar, I. Hubert Joe, N. Sekar and V.S. Jayakumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 72, 654 (2009); https://doi.org/10.1016/j.saa.2008.11.017
D.W. Schwenke and D.G. Truhlar, J. Chem. Phys., 82, 2418 (1985); https://doi.org/10.1063/1.448335
M. Gutowski, J.G.C.M. Van Duijneveldt-Van de Rijdt, J.H. Van Lenthe and F.B. Van Duijneveldt, J. Chem. Phys., 98, 4728 (1993); https://doi.org/10.1063/1.465106
F. Weinhold, C.R. Landis and E.D. Glendening, Int. Rev. Phys. Chem., 35, 399 (2016); https://doi.org/10.1080/0144235X.2016.1192262
D.A. Kleinman, Phys. Rev., 126, 1977 (1962); https://doi.org/10.1103/PhysRev.126.1977
H. Alyar, Z. Kantarci, M. Bahat and E. Kasap, J. Mol. Struct., 834-836, 516 (2007); https://doi.org/10.1016/j.molstruc.2006.11.066
J.L. Oudar and D.S. Chemla, J. Chem. Phys., 66, 2664 (1977); https://doi.org/10.1063/1.434213
N. Sukumar, A Matter of Density: Exploring the Electron Density Concept in the Chemical, Biological, and Materials Sciences, Wiley-Blackwell (2012).
P. Rawat and R.N. Singh, Spectrochim. Acta A Mol. Biomol. Spectrosc., 140, 344 (2015); https://doi.org/10.1016/j.saa.2014.12.080
R.G. Parr, L. Szentpály and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999); https://doi.org/10.1021/ja983494x
R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York (1989).
A. Daina, O. Michielin and V. Zoete, Sci. Rep., 7, 42717 (2017); https://doi.org/10.1038/srep42717
M. Alsawalha, S.R. Bolla, N. Kandakatla, V. Srinivasadesikan, V.P. Veeraraghavan and K.M. Surapaneni, Bioinform., 15, 380 (2019); https://doi.org/10.6026/97320630015380
R. Yuan, S. Madani, X.X. Wei, K. Reynolds and S.M. Huang, Drug Metab. Dispos., 30, 1311 (2002); https://doi.org/10.1124/dmd.30.12.1311
J.E. McGraw, A Handbook of Pharmacogenomics and Stratified Medicine, Elsevier Publication (2014).
F. Cheng, W. Li, Y. Zhou, J. Shen, Z. Wu, G. Liu, P.W. Lee and Y.T. Admet, J. Chem. Inf. Mod., 52, 3099 (2012); https://doi.org/10.1021/ci300367a
M.M. Julie, T. Prabhu, E. Elamuruguporchelvi, F.B. Asif, S. Muthu and A. Irfan, J. Mol. Liq., 336, 116335 (2021); https://doi.org/10.1016/j.molliq.2021.116335
L. Schrödinger and W. DeLano, PyMOL. 2020; http://www.pymol.org/pymol
https://www.ebi.ac.uk/thornton-srv/databases/pdbsum/
A.T. Dubis, S.J. Grabowski, D.B. Romanowska, T. Misiaszek and J. Leszczynski, J. Phys. Chem. A, 106, 10613 (2002); https://doi.org/10.1021/jp0211786