Copyright (c) 2024 Netra Pal Singh, Maitreyi Singh, Anand Ratnam, Anuroop Kumar
This work is licensed under a Creative Commons Attribution 4.0 International License.
Carboxamide-based Fluorescent Sensor for the Detection of Mg2+ and Ni2+ Ions
Corresponding Author(s) : Netra Pal Singh
Asian Journal of Chemistry,
Vol. 36 No. 6 (2024): Vol 36 Issue 6, 2024
Abstract
In this work, pyridine-2,6-dicarboxamide based ligand was synthesized by reacting pyridine-2,6-dicarboxylic acid with a thiazole derivative. The synthesized ligand was characterized by 1H NMR and 13C NMR, IR spectroscopic and mass spectrometry. The UV-visible spectrum accompanied with fluorescent spectral studies, binding constants and limit of detection proved efficient sensing abilities. The ligand was found to bind with one equivalent of an M2+ ion as validated by Job’s plot and binding parameters. The novel fluorescent probe based on amide ligand exhibits precise and selective response to Mg2+ and Ni2+ ions in HEPES buffer solution showing the detection limit to be 2.1502 × 10–8 mol/L and 4.8007 × 10–8 mol/L, respectively. The binding stoichiometry of amide ligand with Mg2+ and Ni2+ was estimated by Job’s plot method and found to be 1:1, which is further confirmed by mass spectrometry.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.P. Carter, A.M. Young and A.E. Palmer, Chem. Rev., 114, 4564 (2014); https://doi.org/10.1021/cr400546e
- J. Lian, Q. Xu, Y. Wang and F. Meng, Front. Chem., 8, 593291 (2020); https://doi.org/10.3389/fchem.2020.593291
- Y. Shi, W. Zhang, Y. Xue and J. Zhang, Chemosensors, 11, 226 (2023); https://doi.org/10.3390/chemosensors11040226
- D. Bansal and R. Gupta, Dalton Trans., 45, 502 (2016); https://doi.org/10.1039/C5DT03669K
- P. Kumar, V. Kumar and R. Gupta, RSC Adv., 5, 97874 (2015); https://doi.org/10.1039/C5RA20760F
- P. Kumar, V. Kumar and R. Gupta, RSC Adv., 7, 7734 (2017); https://doi.org/10.1039/C6RA27565F
- V. Kumar, P. Kumar and R. Gupta, RSC Adv., 7, 23127 (2017); https://doi.org/10.1039/C7RA01453H
- P. Kumar, V. Kumar and R. Gupta, Dalton Trans., 46, 10205 (2017); https://doi.org/10.1039/C7DT01811H
- P. Kumar, V. Kumar, S. Pandey and R. Gupta, Dalton Trans., 47, 9536 (2018); https://doi.org/10.1039/C8DT01351A
- H. Rubin, BioEssays, 27, 311 (2005); https://doi.org/10.1002/bies.20183
- A.A. Mushegian, Sci. Signal., 9, ec269 (2016); https://doi.org/10.1126/scisignal.aal3828
- M.H. Pontes, J. Yeom and E.A. Groisman, Mol. Cell, 64, 480 (2016); https://doi.org/10.1016/j.molcel.2016.05.008
- B. O’Rourke, P.H. Backx and E. Marban, Science, 257, 245 (1992); https://doi.org/10.1126/science.1321495
- F. Wolf, Mol. Aspects Med., 24, 3 (2003); https://doi.org/10.1016/S0098-2997(02)00087-0
- W. Jahnen-Dechent and M. Ketteler, Clin. Kidney J., 5(Suppl 1), i3 (2012); https://doi.org/10.1093/ndtplus/sfr163
- J. Kim, T. Morozumi and H. Nakamura, Org. Lett., 9, 4419 (2007); https://doi.org/10.1021/ol701976x
- G. Men, C. Chen, S. Zhang, C. Liang, Y. Wang, M. Deng, H. Shang, B. Yang and S. Jiang, Dalton Trans., 44, 2755 (2015); https://doi.org/10.1039/C4DT03068K
- Y. Wang, Z.-G. Wang, X.-Q. Song, Q. Chen, H. Tian, C.-Z. Xie, Q.-Z. Li and J.-Y. Xu, Analyst, 144, 4024 (2019); https://doi.org/10.1039/C9AN00583H
- S.B. Mulrooney and R.P. Hausinger, Microbiol. Rev., 27, 239 (2003); https://doi.org/10.1016/S0168-6445(03)00042-1
- S.W. Ragsdale, J. Biol. Chem., 284, 18571 (2009); https://doi.org/10.1074/jbc.R900020200
- R.J. Maier, Biochem. Soc. Trans., 33, 83 (2005); https://doi.org/10.1042/BST0330083
- K.S. Kasprzak, F.W. Sunderman and K. Salnikowa, Mutat. Res., 533, 67 (2003); https://doi.org/10.1016/j.mrfmmm.2003.08.021
- P.H. Kuck, Mineral Commodity Summaries: Nickel, United States Geological Survey (2006).
- X.Q. Liu, X. Zhou, X. Shu and J. Zhu, Macromolecules, 42, 7634 (2009); https://doi.org/10.1021/ma901879t
- J.R. Sheng, F. Feng, Y. Qiang, F.G. Liang, L. Sen and F.-H. Wei, Anal. Lett., 41, 2203 (2008); https://doi.org/10.1080/00032710802237673
- H.X. Wang, D.L. Wang, Q. Wang, X. Li and C.A. Schalley, Org. Biomol. Chem., 8, 1017 (2010); https://doi.org/10.1039/b921342b
- B. Qin, X. Zhang and J. Zhang, Cryst. Growth Des., 20, 5120 (2020); https://doi.org/10.1021/acs.cgd.0c00308
- M. Shamsipur, T. Poursaberi, A.R. Karami, M. Hosseini, A. Momeni, N. Alizadeh, M. Yousefi and M.R. Ganjali, Anal. Chim. Acta, 501, 55 (2004); https://doi.org/10.1016/j.aca.2003.09.008
- V.K. Gupta, R.N. Goyal, S. Agarwal, P. Kumar and N. Bachheti, Talanta, 71, 795 (2007); https://doi.org/10.1016/j.talanta.2006.05.036
- I. Grabchev, J.M. Chovelon and X. Qian, New J. Chem., 27, 337 (2003); https://doi.org/10.1039/b204727f
- I. Qureshi, M.A. Qazi and S. Memon, Sens. Actuators B Chem., 141, 45 (2009); https://doi.org/10.1016/j.snb.2009.06.010
- H. Li, S.J. Zhang, C.L. Gong, Y.-F. Li, Y. Liang, Z.-G. Qi and S. Chen, Analyst, 138, 7090 (2013); https://doi.org/10.1039/c3an01162c
- S. Goswami, S. Chakraborty, S. Paul, S. Halder and A.C. Maity, Tetrahedron Lett., 54, 5075 (2013); https://doi.org/10.1016/j.tetlet.2013.07.051
- L. Lin, S. Hu, Y. Yan, D.-J. Wang, L. Fan, Y.-J. Hu and G.-D. Yin, Res. Chem. Intermed., 43, 283 (2017); https://doi.org/10.1007/s11164-016-2621-9
- S. Atilgan, T. Ozdemir and E.U. Akkaya, Org. Lett., 10, 4065 (2008); https://doi.org/10.1021/ol801554t
- P. Teolato, E. Rampazzo, M. Arduini, F. Mancin, P. Tecilla and U. Tonellato, Chem. Eur. J., 13, 2238 (2007); https://doi.org/10.1002/chem.200600624
- H.J. Kim, J. Hong, A. Hong, S. Ham, J.H. Lee and S.J. Kim, Org. Lett., 10, 1963 (2008); https://doi.org/10.1021/ol800475d
- R. Martinez, F. Zapata, A. Caballero, A. Espinosa, A. Tarraga and P. Molina, Org. Lett., 8, 3235 (2006); https://doi.org/10.1021/ol0610791
- N.C. Lim, S.V. Pavlova and C. Bruckner, Inorg. Chem., 48, 1173 (2009); https://doi.org/10.1021/ic801322x
- J.L. Bricks, A. Kovalchuk, C. Trieflinger, M. Nofz, M. Buschel, A.I. Tolmachev, J. Daub and K.J.J. Rurack, J. Am. Chem. Soc., 127, 13522 (2005); https://doi.org/10.1021/ja050652t
- C. Liang, W. Bu, C. Li, G. Men, M. Deng, Y. Jiangyao, H. Sun and S. Jiang, Dalton Trans., 44, 11352 (2015); https://doi.org/10.1039/C5DT00689A
References
K.P. Carter, A.M. Young and A.E. Palmer, Chem. Rev., 114, 4564 (2014); https://doi.org/10.1021/cr400546e
J. Lian, Q. Xu, Y. Wang and F. Meng, Front. Chem., 8, 593291 (2020); https://doi.org/10.3389/fchem.2020.593291
Y. Shi, W. Zhang, Y. Xue and J. Zhang, Chemosensors, 11, 226 (2023); https://doi.org/10.3390/chemosensors11040226
D. Bansal and R. Gupta, Dalton Trans., 45, 502 (2016); https://doi.org/10.1039/C5DT03669K
P. Kumar, V. Kumar and R. Gupta, RSC Adv., 5, 97874 (2015); https://doi.org/10.1039/C5RA20760F
P. Kumar, V. Kumar and R. Gupta, RSC Adv., 7, 7734 (2017); https://doi.org/10.1039/C6RA27565F
V. Kumar, P. Kumar and R. Gupta, RSC Adv., 7, 23127 (2017); https://doi.org/10.1039/C7RA01453H
P. Kumar, V. Kumar and R. Gupta, Dalton Trans., 46, 10205 (2017); https://doi.org/10.1039/C7DT01811H
P. Kumar, V. Kumar, S. Pandey and R. Gupta, Dalton Trans., 47, 9536 (2018); https://doi.org/10.1039/C8DT01351A
H. Rubin, BioEssays, 27, 311 (2005); https://doi.org/10.1002/bies.20183
A.A. Mushegian, Sci. Signal., 9, ec269 (2016); https://doi.org/10.1126/scisignal.aal3828
M.H. Pontes, J. Yeom and E.A. Groisman, Mol. Cell, 64, 480 (2016); https://doi.org/10.1016/j.molcel.2016.05.008
B. O’Rourke, P.H. Backx and E. Marban, Science, 257, 245 (1992); https://doi.org/10.1126/science.1321495
F. Wolf, Mol. Aspects Med., 24, 3 (2003); https://doi.org/10.1016/S0098-2997(02)00087-0
W. Jahnen-Dechent and M. Ketteler, Clin. Kidney J., 5(Suppl 1), i3 (2012); https://doi.org/10.1093/ndtplus/sfr163
J. Kim, T. Morozumi and H. Nakamura, Org. Lett., 9, 4419 (2007); https://doi.org/10.1021/ol701976x
G. Men, C. Chen, S. Zhang, C. Liang, Y. Wang, M. Deng, H. Shang, B. Yang and S. Jiang, Dalton Trans., 44, 2755 (2015); https://doi.org/10.1039/C4DT03068K
Y. Wang, Z.-G. Wang, X.-Q. Song, Q. Chen, H. Tian, C.-Z. Xie, Q.-Z. Li and J.-Y. Xu, Analyst, 144, 4024 (2019); https://doi.org/10.1039/C9AN00583H
S.B. Mulrooney and R.P. Hausinger, Microbiol. Rev., 27, 239 (2003); https://doi.org/10.1016/S0168-6445(03)00042-1
S.W. Ragsdale, J. Biol. Chem., 284, 18571 (2009); https://doi.org/10.1074/jbc.R900020200
R.J. Maier, Biochem. Soc. Trans., 33, 83 (2005); https://doi.org/10.1042/BST0330083
K.S. Kasprzak, F.W. Sunderman and K. Salnikowa, Mutat. Res., 533, 67 (2003); https://doi.org/10.1016/j.mrfmmm.2003.08.021
P.H. Kuck, Mineral Commodity Summaries: Nickel, United States Geological Survey (2006).
X.Q. Liu, X. Zhou, X. Shu and J. Zhu, Macromolecules, 42, 7634 (2009); https://doi.org/10.1021/ma901879t
J.R. Sheng, F. Feng, Y. Qiang, F.G. Liang, L. Sen and F.-H. Wei, Anal. Lett., 41, 2203 (2008); https://doi.org/10.1080/00032710802237673
H.X. Wang, D.L. Wang, Q. Wang, X. Li and C.A. Schalley, Org. Biomol. Chem., 8, 1017 (2010); https://doi.org/10.1039/b921342b
B. Qin, X. Zhang and J. Zhang, Cryst. Growth Des., 20, 5120 (2020); https://doi.org/10.1021/acs.cgd.0c00308
M. Shamsipur, T. Poursaberi, A.R. Karami, M. Hosseini, A. Momeni, N. Alizadeh, M. Yousefi and M.R. Ganjali, Anal. Chim. Acta, 501, 55 (2004); https://doi.org/10.1016/j.aca.2003.09.008
V.K. Gupta, R.N. Goyal, S. Agarwal, P. Kumar and N. Bachheti, Talanta, 71, 795 (2007); https://doi.org/10.1016/j.talanta.2006.05.036
I. Grabchev, J.M. Chovelon and X. Qian, New J. Chem., 27, 337 (2003); https://doi.org/10.1039/b204727f
I. Qureshi, M.A. Qazi and S. Memon, Sens. Actuators B Chem., 141, 45 (2009); https://doi.org/10.1016/j.snb.2009.06.010
H. Li, S.J. Zhang, C.L. Gong, Y.-F. Li, Y. Liang, Z.-G. Qi and S. Chen, Analyst, 138, 7090 (2013); https://doi.org/10.1039/c3an01162c
S. Goswami, S. Chakraborty, S. Paul, S. Halder and A.C. Maity, Tetrahedron Lett., 54, 5075 (2013); https://doi.org/10.1016/j.tetlet.2013.07.051
L. Lin, S. Hu, Y. Yan, D.-J. Wang, L. Fan, Y.-J. Hu and G.-D. Yin, Res. Chem. Intermed., 43, 283 (2017); https://doi.org/10.1007/s11164-016-2621-9
S. Atilgan, T. Ozdemir and E.U. Akkaya, Org. Lett., 10, 4065 (2008); https://doi.org/10.1021/ol801554t
P. Teolato, E. Rampazzo, M. Arduini, F. Mancin, P. Tecilla and U. Tonellato, Chem. Eur. J., 13, 2238 (2007); https://doi.org/10.1002/chem.200600624
H.J. Kim, J. Hong, A. Hong, S. Ham, J.H. Lee and S.J. Kim, Org. Lett., 10, 1963 (2008); https://doi.org/10.1021/ol800475d
R. Martinez, F. Zapata, A. Caballero, A. Espinosa, A. Tarraga and P. Molina, Org. Lett., 8, 3235 (2006); https://doi.org/10.1021/ol0610791
N.C. Lim, S.V. Pavlova and C. Bruckner, Inorg. Chem., 48, 1173 (2009); https://doi.org/10.1021/ic801322x
J.L. Bricks, A. Kovalchuk, C. Trieflinger, M. Nofz, M. Buschel, A.I. Tolmachev, J. Daub and K.J.J. Rurack, J. Am. Chem. Soc., 127, 13522 (2005); https://doi.org/10.1021/ja050652t
C. Liang, W. Bu, C. Li, G. Men, M. Deng, Y. Jiangyao, H. Sun and S. Jiang, Dalton Trans., 44, 11352 (2015); https://doi.org/10.1039/C5DT00689A